

# Eclipse® Model 706 High Performance Guided Wave Radar Level Transmitter

#### DESCRIPTION

The Eclipse® Model 706 High Performance Transmitter is a loop-powered, 24 VDC level transmitter that is based upon the proven and accepted technology of Guided Wave Radar (GWR). Encompassing a number of significant engineering accomplishments, this leading edge level transmitter is designed to provide measurement performance well beyond that of many of the more traditional technologies.

Utilizing "diode switching" technology, along with the most comprehensive probe offering on the market, this single transmitter can be used in a wide variety of applications ranging from very light hydrocarbons to waterbased media.

The innovative angled, dual compartment enclosure is now a common sight in the industry. This enclosure, first brought to the industry by Magnetrol® in 1998, is angled to maximize ease of wiring, configuration, and viewing of the versatile graphic LCD display.

One universal Model 706 transmitter can be used and interchanged with all probe types, and offers enhanced reliability as it is certified for use in critical SIL 2 hardware safety loops.

The ECLIPSE Model 706 supports both the FDT/DTM and Enhanced DD (EDDL) standards, which allow viewing of valuable configuration and diagnostic information such as the echo curve in tools such as PACT*ware*™, AMS Device Manager, and various HART® Field Communicators.





Eclipse® Model 706 DTM

# Measures Level, Interface, Volume and Flow



# APPLICATIONS

MEDIA: Liquids, solids, or slurries; hydrocarbons to waterbased media (Dielectric Constant  $\mathbf{E}_{\rm r}$  = 1.2–100)

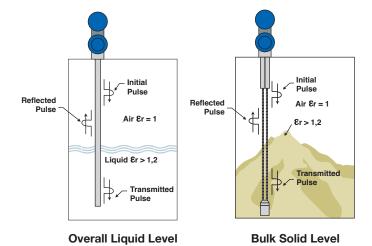
VESSELS: Most process or storage vessels up to rated probe temperature and pressure.

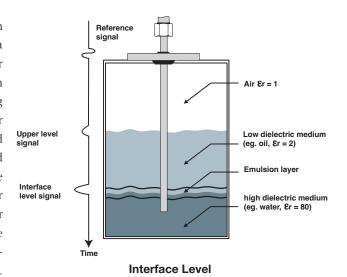
CONDITIONS: All level measurement and control applications including process conditions exhibiting visible vapors, foam, surface agitation, bubbling or boiling, high fill/empty rates, low level and varying dielectric media or specific gravity.

#### FEATURES

- Multivariable, two-wire, 24 VDC loop-powered transmitter for level, interface, volume, or flow.
- Diode switching technology offers best-in-class signal strength and signal-to-noise ratio (SNR) resulting in enhanced capability in difficult low dielectric applications.
- Level measurement not affected by changing media characteristics.
- No need to move levels for calibration.
- Overfill Capable probes allow for "true level" measurement all the way up to the process seal, without the need for special algorithms.
- 4-button keypad and graphic LCD display allow for convenient viewing of configuration parameters and echo curve.
- Proactive diagnostics advise not only what is wrong, but also offer troubleshooting tips.
- · Nine common tank shapes for volumetric output.

- 30-point custom strapping table for uncommonlyshaped tanks.
- Two standard flumes and four standard weirs of various sizes for flow measurement.
- Generic flow equation for non-standard channels.
- 360° rotatable housing can be separated from probe without depressurizing the vessel.
- Probe designs up to +450 °C/431 bar (+850 °F/6250 psi).
- Saturated steam applications up to 207 bar (3000 psi), +400 °C (+750 °F) when installed in side-mounted chamber.
- Cryogenic applications down to -196 °C (-320 °F).
- Transmitter can be remote-mounted up to 3,6 m (12 feet) away from the probe.
- FMEDA certification allows use in SIL 2 Loops.
- No moving parts.
- FOUNDATION fieldbus™ and Modbus digital outputs.


#### TECHNOLOGY


#### PRINCIPLE OF OPERATION

ECLIPSE Guided Wave Radar is based upon the technology of TDR (Time Domain Reflectometry). TDR utilizes pulses of electromagnetic energy transmitted down a wave guide (probe). When a pulse reaches a surface that has a higher dielectric constant than the air ( $\mathbf{E}_{\rm r}=1$ ) in which it is traveling, a portion of the pulse is reflected. The transit time of the pulse is then measured via high speed timing circuitry that provides an accurate measure of the liquid (or solids) level. The amplitude of the reflection depends on the dielectric constant of the product. The higher the dielectric constant, the larger is the reflection.

#### **INTERFACE MEASUREMENT**

The ECLIPSE Model 706 is capable of measuring both an upper liquid level and an interface liquid level. As only a portion of the pulse is reflected from a low dielectric upper surface, some of the transmitted energy continues down the GWR probe through the upper liquid. The remaining initial pulse is again reflected when it reaches the higher dielectric lower liquid. It is required that the upper liquid has a dielectric constant less than 10, and the lower liquid has a dielectric constant greater than 15. A typical interface application would be oil over water, with the upper layer of oil being non-conductive ( $\mathbf{E_r} \approx 2.0$ ), and the lower layer of water being very conductive ( $\mathbf{E_r} \approx 80$ ). The thickness of the upper layer could be as small as 50 mm (2") while the maximum upper layer is limited to the length of the GWR probe.





#### SPECIAL APPLICATIONS

#### **EMULSION LAYERS**

As emulsion layers, also called "rag layers" can decrease the strength of the reflected signal in an interface application, GWR transmitters are typically recommended for applications that have clean, distinct layers.

However, the ECLIPSE Model 706, with its powerful internal measurement algorithms, will tend to detect the top of an emulsion layer. Contact the factory for application assistance regarding emulsion layers in your specific application.

# SATURATED STEAM APPLICATIONS (Boilers, Feedwater Heaters, etc.)

As the temperature of a saturated steam application increases, the dielectric constant of the steam vapor space also increases. This increase in vapor space dielectric causes a delay in the GWR signal propagation as it travels down the probe, causing the liquid level to appear lower than actual.

The ECLIPSE Model 706 transmitter and Model 7y8 Coaxial Steam probe provide a unique solution to this application. The effects of the changing steam conditions can be compensated for by utilizing a mechanical steam target placed inside and near the top of the Model 7y8 coaxial probe.

**NOTE:** The measurement error associated with this propagation delay does depend on temperature and is a function of the square root of the vapor space dielectric constant. For example, with no compensation, a +230 °C (+450 °F) application would show a level error of about 5.5 %, while a +315 °C (+600 °F) application would show an error approaching 20 %!

Knowing exactly where the target is located at room temperature, and then continuously monitoring its apparent location, the vapor space dielectric can be back-calculated. Knowing the vapor space dielectric, accurate compensation of the actual liquid level reading is accomplished.

This is a patented technique with two US Patents (US 6642801 and US 6867729) issued for both the mechanical target concept and the associated software algorithm.

Contact the factory for additional information relating to saturated steam applications.

#### **OVERFILL CAPABILITY**

Although agencies like WHG or VLAREM certify **Overfill proof** protection, defined as the tested, reliable operation when the transmitter is used as overfill alarm, it is assumed in their analysis that the installation is designed in such a way that the vessel or side mounted cage cannot physically overfill.

However, there are practical applications where a GWR probe can be completely flooded with level all the way up to the process connection (face of the flange). Although the affected areas are application dependent, typical GWR probes have a transition zone (or possibly dead zone) at the top of the probe where interacting signals can either affect the linearity of the measurement or, more dramatically, result in a complete loss of signal.

While some manufacturers of GWR transmitters may use special algorithms to "infer" level measurement when this undesirable signal interaction occurs and the actual level signal is lost, the ECLIPSE Model 706 offers a unique solution by utilizing a concept called **Overfill Safe Operation**.

An **Overfill safe probe** is defined by the fact that it has a predictable and uniform characteristic impedance all the way down the entire length of the waveguide (probe). These probes allow the ECLIPSE Model 706 to measure accurate levels up to the process flange without any non-measurable zone at the top of the GWR probe.

**Overfill safe** GWR probes are unique to ECLIPSE GWR, and coaxial probes can be installed at any location on the vessel. Overfill safe probes are offered in a variety of Coaxial and Caged designs.

#### PROBE OVERVIEW

#### THREE STYLES OF GWR PROBES

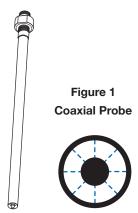
With one basic ECLIPSE Model 706 transmitter that operates with all probes, choosing the proper Guided Wave Radar (GWR) probe is the most important decision in the application process. The probe configuration establishes fundamental performance characteristics.

All ECLIPSE Model 706 probes can be described by three basic configurations:

- Coaxial
- Twin flexible cable
- Single element (rigid rod or flexible cable)

Each of these probe configurations has specific strengths and weaknesses. Although there can be overlap, and different probes can certainly be used in similar applications, it is important to understand their basic differences so that one can choose the probe type that will offer optimal performance.

The descriptions below are facts relating to the physics of GWR technology and are not specific to the ECLIPSE Model 706.


#### COAXIAL PROBES

The coaxial probe is the most efficient of all GWR probe configurations and should be the first consideration in all applications. Analogous to the efficiency of coaxial cable, a coaxial probe allows almost unimpeded movement of the high frequency pulses throughout its length.

The electromagnetic field that develops between the inner rod and outer tube is completely contained and uniform down the entire length of the probe. See Figure 1. This means that the coaxial probe is immune to any proximity affects from other objects in the vessel, and therefore, in essence, it can be used anywhere that it can mechanically fit.

The efficiency and overall sensitivity of a coaxial configuration yields robust signal strength, even in extremely low dielectric ( $\mathcal{E}_{r} \geq 1.4$ ) applications. The sensitivity of this "closed" design, however, also makes it more susceptible to measurement error in applications that can have coating and buildup.

All ECLIPSE Model 706 coaxial probes are Overfill Safe as standard, by design.



#### BASIC-FOR CLEAN LIQUIDS

The basic 22,5 mm (0.875") diameter coaxial GWR probe is only recommended for use in clean applications or special applications such as saturated steam. Teflon®, PEEK, or alumina spacers centering the inner rod within the outer tube are located at 60 cm (24") intervals, resulting in a perfect characteristic impedance along the entire length of the probe.

This probe is recommended in applications with viscosities up to 500 cP (mPa.s) maximum.

#### **ENLARGED-FOR DIFFICULT LIQUIDS**

The standard Enlarged 45 mm (1.75") or 49 mm (1.93") diameter coaxial GWR probes can be generally used for most applications. They can be installed directly into the tank as well as into bypass cages, stillwells or bridles.

The robust construction reduces the number of spacers required, allowing the probe to be used in applications where higher risk of buildup exists. To further reduce the possibility of media buildup, the use of a single bottom spacer is recommended up to probe lengths of 2.54 m (100"). The overall sensitivity and performance of an enlarged coaxial GWR probe is identical to a standard coaxial GWR probe, but it offers the very important advantage that it can be used in applications with viscosities up to 2,000 cP (mPa.s).

#### THREE STYLES OF GWR PROBES

#### OPTIONAL FLUSHING CONNECTION

The maintenance of coaxial GWR probes in applications suffering from buildup or crystallization can be significantly improved by using an optional flushing connection. This flushing connection is a metal extension with a port welded above the process connection. The port allows the user to purge the inside of the coaxial GWR probe during routine maintenance.

**Note:** The best approach to eliminate the effects of condensation or crystallization is to install adequate insulation or heat tracing (steam or electrical). A flushing connection is no substitute for proper maintenance, but will help to reduce the frequency of the intervention.



# OPTIONAL ANNUNCIATOR **FITTING**

High Pressure and High Temperature High Pressure ECLIPSE Model 706 probes containing a glass ceramic alloy process seal (Models 7yD, P, J, L, M and N) are available with an optional annunciator fitting. The use of this fitting complies with the Dual Seal requirements of

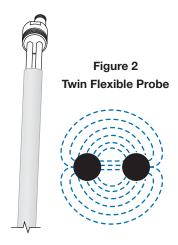


#### CAGED-FOR DIRTY LIQUIDS

Unique to MAGNETROL, the Caged GWR probe is a single rod probe which uses an existing or new cage, bridle, or stillwell as the second conductor to re-create the same signal propagation of a coaxial GWR probe. Caged GWR probes are designed for 2" (DN50), 3" (DN80) or 4" (DN100) diameter metal chambers, and utilize a specially designed impedance matching section that results in the same overall characteristic impedance of a coaxial style GWR probe.

Caged GWR probes offer the same sensitivity and performance as coaxial GWR probes, but the single conductor design allows it to be used in applications with viscosities up to 10,000 cP (mPa.s).

ANSI/ISA-12.27.01-2011, titled "Requirements for Process Sealing between Electrical Systems and Flammable or Combustible Process Fluids," which require the incorporation of a method that indicates or annunciates a primary seal failure (e.g., visible leakage, an audible whistle, or other means of monitoring).


#### THREE STYLES OF GWR PROBES

#### TWIN CABLE FLEXIBLE PROBES

The relationship of the Twin Cable probe design to a coaxial probe design is similar to that of older, twin-lead, antenna lead-in to modern, coaxial cable. 300-ohm twin-lead cable simply does not have the efficiency of 75-ohm coaxial cable, making the parallel conductor design less sensitive than the concentric coaxial. See Figure 2. This translates into Twin Cable GWR probes having the ability to measure dielectrics down to  $\mathbf{E}_{\mathbf{r}} \ge 1.7$ .

Heavy bridging of material between the cables across the FEP coating can cause improper measurement and should be avoided.

Figure 2 also shows that, although most of the electromagnetic field develops between the two cables, there is also some peripheral energy that expands outward, making the Twin Cable probe more sensitive to proximity effects of objects located immediately around it. For that reason, it is recommended to keep the active element of the Twin Cable probe at least 25 mm (1") away from metal objects.

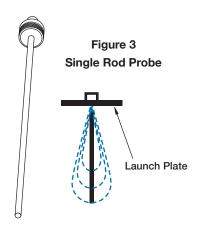


#### SINGLE ROD PROBES

Single element GWR probes act quite differently than both coaxial and twin cable designs. With only one conductor to work with, the pulses of energy develop between the single rod probe and the mounting nut or flange. In other words, the pulse propagates down and around the rod as it references its ground at the top of the tank.

The energy and efficiency of the pulse are directly related to how much metallic surface exists around it at the top of the vessel. This metallic surface at the top of the probe is called the "launch plate." The larger the launch plate, the more efficient the signal propagation down the probe.

Figure 3 shows the single element design and how the electromagnetic pulse effectively expands into a teardrop shape as it propagates away from the top of the tank (the inherent ground reference). This single element configuration (rod or cable) is the least efficient of the three probe types, but can still operate with a with minimum dielectric detection of approximately  $\mathbf{E}_{r} > 1.7$  in an open, non-metallic vessel.


However, this dielectric constant performance improves considerably ( $\varepsilon_{\rm r}$  > 1.4) when the single rod probe is installed in a metal cage/bridle, or mounted 50–150 mm (2–6") away from a metal tank wall. Because the design is "open," it exhibits two strong tendencies:

- It is the most forgiving of coating and buildup. (The PFA-insulated probe is the best choice for severe buildup and coating).
- It is most affected by proximity issues.

It is important to note that a parallel metal wall INCREASES the performance of a single rod probe while a singular, metal object protruding out near the probe may be improperly detected as a liquid level.

These tendencies are application/installation dependent. Therefore, by properly matching the single rod probe to a cage/chamber, the ECLIPSE Model 706 broad offering of caged probes combines the performance/sensitivity advantages of a coaxial probe and the viscosity immunity of a single rod probe. The Caged Probes are Overfill Safe by design, can be used in interface and other difficult, low dielectric applications, and are unique to MAGNETROL and the ECLIPSE Model 706.

Contact the factory for additional support and questions.



#### PROBE SELECTION GUIDE

**COAXIAL/CAGED GWR PROBE** 

#### signal propagation signal propagation signal propagation end view end view **GWR Dielectric** Temperature Max. Overfill **Viscosity Description Application** Installation Vacuum ® Probe<sup>1</sup> Range 23 Range 4 **Pressure** Safe cP (mPa.s) **Coaxial GWR Probes—Liquids** -40 to +200 °C 70 bar Standard 7yT Level/Interface Tank/Chamber $|\mathcal{E}_r| 1.4-100$ Yes Yes 500/2000 Temperature (-40 to +400 °F) (1000 psi) -196 to +200 °C High 431 bar 7yP Level/Interface Tank/Chamber $|\varepsilon_{\rm r}| 1.4-100$ Full Yes 500/2000 Pressure (-320 to +400 °F) (6250 psi) -196 to +450 °C (-320 to +850 °F) High Temp./ 431 bar 7yD Level/Interface Tank/Chamber $\varepsilon_{\rm r}$ 1.4–100 Full Yes 500/2000 High Press. (6250 psi) 40 to +400 °C 6 207 bar Steam Saturated 500 7yS Tank/Chamber ε<sub>r</sub> 10-100 Full No ⑦ (-40 to +750 °F) (3000 psi) Probe Steam **Caged GWR Probes—Liquids** -40 to +200 °C Standard $E_{\rm r}$ 1.4–100 7yG Level/Interface Chamber Yes Yes 10000 (-40 to +400 °F) (1000 psi) Temperature High -196 to +200 °C 431 bar 7yL Level/Interface Chamber $\varepsilon_{\rm r} 1.4 - 100$ Full Yes 10000 (-320 to +400 °F) (6250 psi) Pressure -196 to +450 °C High Temp./ 431 bar Level/Interface Chamber $E_{\rm r}$ 1.4–100 Yes 10000 7yJ Full High Press. (-320 to +850 °F) (6250 psi) Single Rod Rigid GWR Probes—Liquids -40 to +200 °C 70 bar (-40 to +400 °F) (1000 psi) Standard ε<sub>r</sub> 1.7–100 No ® 10000 7yF Level Tank Yes Temperature High -196 to +200 °C 7yM Level Tank $\varepsilon_{\rm r}$ 1.7–100 Full No (8) 10000 Pressure (-320 to +400 °F) (6250 psi) -196 to +450 °C | 431 bar High Temp./ 7yN Level Tank $\varepsilon_{\rm r}$ 1.7–100 Full No ® 10000 (-320 to +850 °F) (6250 psi) High Press. Single Cable Flexible GWR Probes—Liquids Standard -40 to +200 °C 70 bar 7y1 Level Tank $\varepsilon_{\rm r}$ 1.7–100 Yes No ® 10000 (-40 to +400 °F) Temperature (1000 psi) -196 to +200 °C 431 bar High 10000 7<sub>y</sub>3 Level Tank E<sub>r</sub> 1.7-100 Full No ® Pressure (-320 to +400 °F)|(6250 psi) High Temp./ -196 to +450 °C 431 bar

TWIN CABLE GWR PROBE

SINGLE ROD/CABLE PROBE

Full

Yes

(-320 to +850 °F) (6250 psi)

70 bar

(1000 psi)

-40 to +200 °C

(-40 to +400 °F)

(-40 to +150 °F)

Flexible GWR Probes—Solids

No®

No (8)

10000

1500

| 7y2                                   | 7y2 Bulk Solids Level Tank |  | Tank | ε <sub>r</sub> 4−100   | (-40 to +150 °F) | Atmos. | No | No ® | 10000 |  |  |  |  |
|---------------------------------------|----------------------------|--|------|------------------------|------------------|--------|----|------|-------|--|--|--|--|
| Twin Cable Flexible GWR Probes—Solids |                            |  |      |                        |                  |        |    |      |       |  |  |  |  |
| 7y5 Bulk Solids Level                 |                            |  | Tank | ε <sub>r</sub> 1.7–100 | -40 to +65 °C    | Atmos. | No | No ® | 1500  |  |  |  |  |

Twin Cable Flexible GWR Probes—Liquids

E<sub>r</sub> 1.4–100

 $E_{\rm r}$  1.7–100

7y6

7y7

Level/Interface

Level/Interface

Chamber

Tank

**Single Cable** 

High Press

Standard

Temperature

Probe

① 2<sup>nd</sup> digit A=English, C=Metric

 $<sup>\ \, \ \, \ \, \ \, \ \, \ \,</sup>$  Minimum  $\epsilon_r$  1.2 with end of probe analysis enabled.

Single rod probes mounted directly into the vessel must be within 75–150 mm (3–6") of metal tank wall to obtain minimum dielectric of 1.4, otherwise ε<sub>r</sub> min = 1.7.

Depends on the probe spacer material. Refer to Model Selection for spacer options.

<sup>®</sup> ECLIPSE probes containing o-rings can be used for vacuum (negative pressure) service, but only those probes with glass seals are hermetically sealed to <10<sup>-8</sup> cc/sec @ 1 atmosphere helium.

<sup>6</sup> When installed in side-mounted chamber.

⑦ Consult factory for overfill applications

<sup>®</sup> Overfill capability can be achieved with software.

# TRANSMITTER SPECIFICATIONS

# FUNCTIONAL/PHYSICAL

| System Design            |                                                                                   |                                                                                    |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|
| Measurement Princip      | ole                                                                               | Guided Wave Radar based on Time Domain Reflectometry (TDR)                         |  |  |  |
| Input                    |                                                                                   |                                                                                    |  |  |  |
| Measured Variable        |                                                                                   | Level, as determined by GWR time of flight                                         |  |  |  |
| Span                     |                                                                                   | 15 cm to 30 m (6" to 100'); Model 7yS Probe 610 cm (20') max.                      |  |  |  |
| Output                   |                                                                                   |                                                                                    |  |  |  |
| Туре                     |                                                                                   | 4 to 20 mA with HART: 3.8 mA to 20.5 mA useable (per NAMUR NE43)                   |  |  |  |
|                          |                                                                                   | Foundation fieldbus™: H1 (ITK Ver. 6.1.1)                                          |  |  |  |
|                          |                                                                                   | Modbus                                                                             |  |  |  |
| Resolution               | Analog:                                                                           | .003 mA                                                                            |  |  |  |
|                          | Digital Display:                                                                  | 1 mm                                                                               |  |  |  |
| Loop Resistance          |                                                                                   | 591 ohms @ 24 VDC and 22 mA                                                        |  |  |  |
| Diagnostic Alarm         |                                                                                   | Selectable: 3.6 mA, 22 mA (meets requirements of NAMUR NE 43), or HOLD last output |  |  |  |
| Diagnostic Indication    | 1                                                                                 | Meets requirements of NAMUR NE107                                                  |  |  |  |
| Damping                  |                                                                                   | Adjustable 0–10 seconds                                                            |  |  |  |
| User Interface           |                                                                                   |                                                                                    |  |  |  |
| Keypad                   |                                                                                   | 4-button menu-driven data entry                                                    |  |  |  |
| Display                  |                                                                                   | Graphic liquid crystal display                                                     |  |  |  |
| Digital Communication    | mmunication/Systems HART Version 7—with Field Communicator, Foundation fieldbus™, |                                                                                    |  |  |  |
|                          |                                                                                   | DTM (PACTware™), EDDL                                                              |  |  |  |
| Menu Languages           |                                                                                   | Transmitter LCD: English, French, German, Spanish, Russian                         |  |  |  |
|                          |                                                                                   | HART DD: English, French, German, Spanish, Russian, Chinese, Portuguese            |  |  |  |
|                          |                                                                                   | FOUNDATION fieldbus and Modbus Host System: English                                |  |  |  |
| Power (at transmitter te | erminals)                                                                         | HART: General Purpose (Weather proof)/Intrinsically Safe/Explosion-proof:          |  |  |  |
|                          |                                                                                   | 16 to 36 VDC                                                                       |  |  |  |
|                          |                                                                                   | 11 VDC minimum under certain conditions (refer to I&O Manual BE57-606)             |  |  |  |
|                          |                                                                                   | Foundation fieldbus™: 9 to 32 VDC                                                  |  |  |  |
|                          |                                                                                   | FISCO: 9 to 17.5 V DC                                                              |  |  |  |
|                          |                                                                                   | Modbus: 8 to 30 VDC                                                                |  |  |  |
|                          |                                                                                   | Explosion Proof, General Purpose, and Weatherproof                                 |  |  |  |
| Housing                  |                                                                                   |                                                                                    |  |  |  |
| Material                 |                                                                                   | IP67/die-cast aluminum A413 (<0.4 % copper); optional 316 stainless steel          |  |  |  |
| Net/Gross Weight         | Aluminum:                                                                         | 2,0 kg (4.5 lbs.)                                                                  |  |  |  |
|                          | 316 Stainless Steel:                                                              | Steel: 4,50 kg (10.0 lbs.)                                                         |  |  |  |
| Overall Dimensions       |                                                                                   | H 212 mm (8.34") x W 102 mm (4.03") x D 192 mm (7.56")                             |  |  |  |
| Cable Entry              |                                                                                   | ½" NPT or M20                                                                      |  |  |  |
| SIL 2 Certification (S   | afety Integrity Level)                                                            | Safe Failure Fraction = 93 % (HART only)                                           |  |  |  |
|                          |                                                                                   | Functional Safety to SIL 2 as 1001 in accordance with IEC 61508                    |  |  |  |

# TRANSMITTER SPECIFICATIONS CONTINUED

# FUNCTIONAL/PHYSICAL

| nvironment                        |                                                                               |  |  |  |
|-----------------------------------|-------------------------------------------------------------------------------|--|--|--|
|                                   | 40 to 190 °C ( 40 to 1175 °C) 1 CD viousble 20 to 170 °C ( 5 to 1400 °C)      |  |  |  |
| Operating Temperature             | -40 to +80 °C (-40 to +175 °F); LCD viewable -20 to +70 °C (-5 to +160 °F)    |  |  |  |
| Storage Temperature               | -45 to +85 °C (-50 to +185 °F)                                                |  |  |  |
| Humidity                          | 0 to 99 %, non-condensing                                                     |  |  |  |
| Electromagnetic Compatibility     | Meets CE requirement (EN 61326) and NAMUR NE 21                               |  |  |  |
|                                   | NOTE: Single Rod and Twin Cable probes must be used in metallic vessel        |  |  |  |
| -                                 | or stillwell to maintain CE noise immunity                                    |  |  |  |
| Surge Protection                  | Meets CE EN 61326 (1000V)                                                     |  |  |  |
| Shock/Vibration                   | ANSI/ISA-S71.03 Class SA1 (Shock); ANSI/ISA-S71.03 Class VC2 (Vibration)      |  |  |  |
| Performance                       |                                                                               |  |  |  |
| Reference Conditions ①            | Reflection from liquid, with dielectric constant in center of selected range, |  |  |  |
|                                   | with a 1,8 m (72") coaxial probe at +20 °C (+70 °F), in Auto Threshold Mode   |  |  |  |
| Linearity ② Coaxial/Caged Probes: | <0.1 % of probe length or 2,5 mm (0.1"), whichever is greater                 |  |  |  |
| Single Rod in Tanks/Twin Cable:   | <0.3 % of probe length or 7,5 mm (0.3"), whichever is greater                 |  |  |  |
| Accuracy 3 Coaxial/Caged Probes:  | ±0.1 % of probe length or ±2,5 mm (0.1"), whichever is greater                |  |  |  |
| Single Rod in Tanks/Twin Cable:   | $\pm 0.5$ % of probe length or $\pm 13$ mm (0.5"), whichever is greater       |  |  |  |
| Interface Operation:              | Coaxial/Caged probes: ±25 mm (1") for an interface thickness greater than     |  |  |  |
|                                   | 50 mm (2")                                                                    |  |  |  |
|                                   | Twin Flexible probes: ±50 mm (2") for an interface thickness greater than     |  |  |  |
|                                   | 200 mm (8")                                                                   |  |  |  |
| Resolution                        | ±0.1 mm or 1"                                                                 |  |  |  |
| Repeatability                     | <2,5 mm (0.1")                                                                |  |  |  |
| Hysteresis                        | teresis <2,5 mm (0.1")                                                        |  |  |  |
| Response Time                     | Approximately 1 second                                                        |  |  |  |
| Initialization Time               | Less than 10 seconds                                                          |  |  |  |
| Ambient Temperature Effect        | Approx. ±0.02 % of probe length/°C (for probes greater than 2,5 m (8'))       |  |  |  |
| Process Dielectric                | <7,5 mm (0.3") within selected range                                          |  |  |  |
| OUNDATION fieldbus <sup>™</sup>   |                                                                               |  |  |  |
| ITK Version                       | 6.1.1                                                                         |  |  |  |
| H1 Device Class                   | Link Master (LAS)—selectable ON/OFF                                           |  |  |  |
| H1 Profile Class                  | 31PS, 32L                                                                     |  |  |  |
| Function Blocks                   | (8) Al, (3) Transducer, (1) Resource, (1) Arithmetic, (1) Input Selector,     |  |  |  |
|                                   | (1) Signal Characterizer, (2) PID, (1) Integrator                             |  |  |  |
| Quiescent Current                 | 15 mA                                                                         |  |  |  |
| Execution Time                    | 15 ms (40 ms PID Block)                                                       |  |  |  |
| Device Revision                   | 01                                                                            |  |  |  |
| DD Version                        | 0x01                                                                          |  |  |  |
| lodbus                            |                                                                               |  |  |  |
| Power Consumption                 | <0.5W                                                                         |  |  |  |
| Signal Wiring                     | Two-wire half duplex RS-485 Modbus                                            |  |  |  |
| Ground (common mode) Voltage      | ±7V                                                                           |  |  |  |
| Bus Termination                   | Per EIA-485                                                                   |  |  |  |

Specifications will degrade in Fixed Threshold mode.
 Linearity in top 46 cm (18") of Twin Cable and Single Rod probes in tanks will be application dependent.

 $<sup>\</sup>ensuremath{\,^{\odot}}$  Accuracy may degrade when using manual or automatic compensation.

|                                          | 7уТ                                                                                                                      | 7yP                                                                                                                       |  |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
| Description                              | Standard Temperature                                                                                                     | High Pressure                                                                                                             |  |  |
| Application                              | Level/Interface                                                                                                          | Level/Interface                                                                                                           |  |  |
| Installation                             | Tank/Chamber                                                                                                             | Tank/Chamber                                                                                                              |  |  |
| Overfill Safe                            | Yes                                                                                                                      | Yes                                                                                                                       |  |  |
| Materials — Probe                        | 316/316L (1.4401/1.4404)<br>Hastelloy® C (2.4819)<br>Monel® (2.4360)                                                     | 316/316L (1.4401/1.4404)<br>Hastelloy® C (2.4819)<br>Monel® (2.4360)                                                      |  |  |
| Process Seal                             | Teflon® TFE with Viton® o-rings ①                                                                                        | Hermetic Glass Ceramic, Inconel                                                                                           |  |  |
| Spacers                                  | Teflon® TFE                                                                                                              | Teflon® TFE                                                                                                               |  |  |
| Probe Outside Diameter Enlarged Basic    | 316 SS: 45 mm (1.75")<br>Hastelloy: 49 mm (1.90")<br>Monel: 49 mm (1.90")<br>22,5 mm (0.87")                             | 316 SS: 45 mm (1.75")<br>Hastelloy: 49 mm (1.90")<br>Monel: 49 mm (1.90")<br>22,5 mm (0.87")                              |  |  |
| Process Connection  Threaded  Flanged    | Enlarged 2" NPT<br>(¾" NPT or 1" BSP)<br>Various ANSI, EN1092, and<br>proprietary flanges                                | Enlarged 2" NPT<br>(%" NPT or 1" BSP)<br>Various ANSI, EN1092, and<br>proprietary flanges                                 |  |  |
| Available Probe Length Standard Enlarged | 30 to 610 cm (12 to 240")<br>9 m (30') max segmented                                                                     | 30 to 610 cm (12 to 240")<br>9 m (30') max segmented                                                                      |  |  |
| Transition Zones ②  Top Bottom           | 0 mm (0") $ \epsilon_{\rm r} = 1.4 : 150 \ {\rm mm} \ (6") \ {\rm (6}, \\ \epsilon_{\rm r} = 80 : 50 \ {\rm mm} \ (2") $ | 0 mm (0") $ \epsilon_{\rm r} = 1.4 : 150 \ {\rm mm} \ (6") \ {\rm \$}, $ $ \epsilon_{\rm r} = 80 : 50 \ {\rm mm} \ (2") $ |  |  |
| Process Temperature                      | -40 to +200 °C (-40° to +400 °F)                                                                                         | -196 to +200 °C (-320° to +400 °F)                                                                                        |  |  |
| Max. Process Pressure 3                  | 70 bar @ +20 °C (1000 psi @ +70 °F)                                                                                      | 431 bar @ +20 °C (6250 psi @ +70 °F)                                                                                      |  |  |
| Dielectric Range                         | 1.4 to 100 ®                                                                                                             | 1.4 to 100 ®                                                                                                              |  |  |
| Vacuum Service ④                         | Negative Pressure,<br>but no hermetic seal                                                                               | Full Vacuum                                                                                                               |  |  |
| Viscosity<br>Enlarged<br>Basic           | 2000cP (mPa.s)<br>500cP (mPa.s)                                                                                          | 2000cP (mPa.s)<br>500cP (mPa.s)                                                                                           |  |  |
| Media Coating                            | Filming                                                                                                                  | Filming                                                                                                                   |  |  |

Other o-ring materials available upon request.
 Transition zones (areas with reduced accuracy) are dielectric dependent. It is recommended to set the 0-100 % measuring range outside of the transition zones.

measuring range outside of the transition zones.

3 Refer to chart on page 16.

4 ECLIPSE probes containing o-rings can be used for vacuum (negative pressure) service, but only those probes with glass seal are hermetically sealed to <10-8 cc/sec @ 1 atmosphere helium.

5 Can be reduced to 75 mm (3") when lower accuracy is acceptable.

6 1.2 minimum dielectric when end of probe analysis is enabled.

# COAXIAL PROBE MATRIX CONTINUED

|                                          | 7yD                                                                                                | 7y\$                                                                        |  |  |
|------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| Description                              | High Temp./High Pressure                                                                           | Steam Probe                                                                 |  |  |
| Application                              | Level/Interface                                                                                    | Saturated Steam                                                             |  |  |
| Installation                             | Tank/Chamber                                                                                       | Tank/Chamber                                                                |  |  |
| Overfill Safe                            | Yes                                                                                                | No ®                                                                        |  |  |
| Materials — Probe                        | 316/316L (1.4401/1.4404)<br>Hastelloy® C (2.4819)<br>Monel® (2.4360)                               | 316/316L (1.4401/1.4404)<br>Hastelloy® C (2.4819)                           |  |  |
| Process Seal                             | Hermetic Glass Ceramic,<br>Inconel                                                                 | Hermetic Glass Ceramic,<br>PEEK HT, Inconel                                 |  |  |
| Spacers                                  | PEEK HT/Ceramic                                                                                    | PEEK HT/Ceramic                                                             |  |  |
| Probe Outside Diameter Enlarged Basic    | 316 SS: 45 mm (1.75")<br>Hastelloy: 49 mm (1.92")<br>Monel: 49 mm (1.92")<br>22,5 mm (0.87")       | N/A<br>22,5 mm (0.87")                                                      |  |  |
| High-Temp Model 7YS                      | N/A                                                                                                | 31,8 mm (1.25")                                                             |  |  |
| Process Connection  Threaded  Flanged    | 2" NPT or 2" BSP<br>Various ANSI, EN1092, and<br>proprietary flanges                               | ¾" NPT or 1" BSP ⑦<br>Various ANSI, EN1092, and<br>proprietary flanges      |  |  |
| Available Probe Length Standard Enlarged | 30 to 610 cm (12 to 240")<br>9 m (30') max segmented                                               | 60 to 610 cm (24 to 240")<br>N/A                                            |  |  |
| Transition Zones ⊕  Top Bottom           | 0 mm (0") $\mathcal{E}_r = 1.4: 150 \text{ mm (6") } @, \\ \mathcal{E}_r = 80: 50 \text{ mm (2")}$ | 200 mm (8") $\varepsilon_{\rm r}$ = 80: 50 mm (2")                          |  |  |
| Process Temperature                      | -196 to 450 °C (-320 to +850 °F)                                                                   | -50 to +400 °C (-58 to +750 °F) ®                                           |  |  |
| Max. Process Pressure ②                  | 431 bar @ +20°C (6250 psi @ +70 °F)                                                                | 207 bar @ +20 °C (3000 psi @ +70 °F) 155 bar @ +345 °C (2250 psi @ +650 °F) |  |  |
| Dielectric Range                         | 1.4 to 100 ®                                                                                       | 10 to 100                                                                   |  |  |
| Vacuum Service ®                         | Full Vacuum                                                                                        | Full Vacuum                                                                 |  |  |
| Viscosity Enlarged Basic                 | 2000cP (mPa.s)<br>500cP (mPa.s)                                                                    | N/A<br>500cP (mPa.s)                                                        |  |  |
| Media Coating                            | Filming                                                                                            | Filming                                                                     |  |  |

① Transition zones (areas with reduced accuracy) are dielectric dependent. It is recommended to set the 0-100 % measuring range outside of the transition zones.

② Refer to chart on page 16.

 <sup>©</sup> ECLIPSE probes containing o-rings can be used for vacuum (negative pressure) service, but only those probes with glass seal are hermetically sealed to <10-8 cc/sec @ 1 atmosphere helium.</li>
 © Can be reduced to 75 mm (3") when lower accuracy is acceptable.

⑤ 1.2 minimum dielectric when end of probe analysis is enabled.

Consult factory for overfill applications.
 Not available with +345 °C (+650 °F) version of the 7yS probe.

 $<sup>\</sup>ensuremath{\$}$  When installed in side-mounted chamber.

# CAGED PROBE MATRIX

|                                                         | 7yG                                                                                            | 7yL                                                                                                    | 7yJ                                                                                                                      |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Description                                             | Standard Temperature                                                                           | High Pressure                                                                                          | High Temp./High Pressure                                                                                                 |
| Application                                             | Level/Interface                                                                                | Level/Interface                                                                                        | Level/Interface                                                                                                          |
| Installation                                            | Chamber                                                                                        | Chamber                                                                                                | Chamber                                                                                                                  |
| Overfill Safe ⑦                                         | Yes                                                                                            | Yes                                                                                                    | Yes                                                                                                                      |
| Materials — Probe                                       | 316/316L (1.4401/1.4404)<br>Hastelloy® C (2.4819)<br>Monel® (2.4360)                           | 316/316L (1.4401/1.4404)<br>Hastelloy® C (2.4819)<br>Monel® (2.4360)                                   | 316/316L (1.4401/1.4404)<br>Hastelloy® C (2.4819)<br>Monel® (2.4360)                                                     |
| Process Seal                                            | Teflon® TFE with Viton® o-rings①                                                               | Hermetic Glass Ceramic, Inconel                                                                        | Hermetic Glass Ceramic, Inconel                                                                                          |
| Spacers                                                 | PEEK                                                                                           | PEEK                                                                                                   | PEEK HT/Celazole                                                                                                         |
| Probe Outside Diameter 2" Chamber 3" Chamber 4" Chamber | 13 mm (.5") to 19 mm (.75")<br>19 mm (.75") to 29 mm (1.13")<br>27 mm (1.05") to 38 mm (1.50") | 13 mm (.5") to 19 mm (.75")<br>19 mm (.75") to 29 mm (1.13")<br>27 mm (1.05") to 38 mm (1.50")         | 13 mm (.5") to 19 mm (.75")<br>19 mm (.75") to 29 mm (1.13")<br>27 mm (1.05") to 38 mm (1.50")                           |
| Process Connection Flanged                              | Various ANSI, EN1092, and proprietary flanges                                                  | Various ANSI, EN1092, and proprietary flanges                                                          | Various ANSI, EN1092, and proprietary flanges                                                                            |
| Available Probe Length                                  | 30 to 610 cm (12 to 240")                                                                      | 30 to 610 cm (12 to 240")                                                                              | 30 to 610 cm (12 to 240")                                                                                                |
| Transition Zones ②  Top Bottom                          | 0 mm (0")                                                                                      | 0 mm (0") $\mathcal{E}_{r} = 1.4: 150 \text{ mm (6") } \$,$ $\mathcal{E}_{r} = 80: 50 \text{ mm (2")}$ | 0 mm (0") $\mathcal{E}_{r} = 1.4 \text{: } 150 \text{ mm (6") } \$,$ $\mathcal{E}_{r} = 80 \text{: } 50 \text{ mm (2")}$ |
| Process Temperature                                     | -40 to +200 °C (-40 to +400 °F)                                                                | -196 to +200 °C (-320 to +400 °F)                                                                      | -196 to +450 °C (-320 to +850 °F)                                                                                        |
| Max. Process Pressure 3                                 | 70 bar @ +20 °C (1000 psi @ +70 °F)                                                            | 431 bar @ +20 °C (6250 psi @ +70 °F)                                                                   | 431 bar @ +20 °C (6250 psi @ +70 °F)                                                                                     |
| Dielectric Range ⑦                                      | 1.4 to 100 ®                                                                                   | 1.4 to 100 ®                                                                                           | 1.4 to 100 ®                                                                                                             |
| Vacuum Service 4                                        | Negative Pressure,<br>but no hermetic seal                                                     | Full Vacuum                                                                                            | Full Vacuum                                                                                                              |
| Viscosity                                               | 10,000cP (mPa.s)                                                                               | 10,000cP (mPa.s)                                                                                       | 10,000cP (mPa.s)                                                                                                         |
| Media Coating                                           | Maximum Error 10 % of coated length (% Error is dependent on dielectric and thickness)         | Maximum Error 10 % of coated length (% Error is dependent on dielectric and thickness)                 | Maximum Error 10 % of coated length (% Error is dependent on dielectric and thickness)                                   |

<sup>Other o-ring materials available upon request.
Transition zones (areas with reduced accuracy) are dielectric dependent. It is recommended to set the 0-100 % measuring range outside of the transition zones.

Refer to chart on page 16.

ECLIPSE probes containing o-rings can be used for vacuum (negative pressure) service, but only those probes with glass seal are hermetically sealed to <10-8 cc/sec @ 1 atmosphere helium.
Can be reduced to 75 mm (3") when lower accuracy is acceptable.

1.2 minimum dielectric when end of probe analysis is enabled.</sup> 

 $<sup>\</sup>ensuremath{\mathfrak{D}}$  When installed in the proper chamber/cage/stilling well.

# SINGLE ROD RIGID PROBE MATRIX

|                                      | 7yF                                                                                                        | 7yM                                                                                                              | 7yN                                                                                                                            |
|--------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Description                          | Standard Temperature                                                                                       | High Pressure                                                                                                    | High Temp./High Pressure                                                                                                       |
| Application                          | Level                                                                                                      | Level                                                                                                            | Level                                                                                                                          |
| Installation                         | Tank                                                                                                       | Tank                                                                                                             | Tank                                                                                                                           |
| Overfill Safe ⑦                      | No                                                                                                         | No                                                                                                               | No                                                                                                                             |
| Materials — Probe                    | 316/316L (1.4401/1.4404)<br>Hastelloy® C (2.4819)<br>Monel® (2.4360)<br>PFA Insulated 316/316L rod         | 316/316L (1.4401/1.4404)<br>Hastelloy® C (2.4819)<br>Monel® (2.4360)                                             | 316/316L (1.4401/1.4404)<br>Hastelloy® C (2.4819)<br>Monel® (2.4360)                                                           |
| Process Seal                         | Teflon® TFE with Viton® o-rings①                                                                           | Hermetic Glass Ceramic, Inconel                                                                                  | Hermetic Glass Ceramic, Inconel                                                                                                |
| Spacers                              | None                                                                                                       | None                                                                                                             | PEEK HT/Celazole                                                                                                               |
| Probe Outside Diameter               | Bare: 10 mm (0.38") rod<br>Coated: 16 mm (0.625") rod                                                      | Bare: 10 mm (0.38") rod                                                                                          | Bare: 13 mm (0.50") rod                                                                                                        |
| Process Connection  Threaded Flanged | 1" or 2" (NPT or BSP)<br>Various ANSI, EN1092, and<br>proprietary flanges                                  | 1" or 2" (NPT or BSP) Various ANSI, EN1092, and proprietary flanges                                              | 2" (NPT or BSP) Various ANSI, EN1092, and proprietary flanges                                                                  |
| Available Probe Length               | 60 to 732 cm (24" to 288")<br>610 cm (240") maximum<br>for PFA coated probes                               | 60 to 732 cm (24" to 288")                                                                                       | 60 to 732 cm (24" to 288")                                                                                                     |
| Transition Zones ②  Top Bottom       | Application Dependent $\epsilon_r = 1.4 : 150 \text{ mm (6") } \$,$ $\epsilon_r = 80 : 50 \text{ mm (2")}$ | Application Dependent $\mathcal{E}_r = 1.4$ : 150 mm (6") $\hat{\mathbb{S}}$ , $\mathcal{E}_r = 80$ : 50 mm (2") | Application Dependent $\epsilon_{r} = 1.4 \text{: } 150 \text{ mm (6") } \$,$ $\epsilon_{r} = 80 \text{: } 50 \text{ mm (2")}$ |
| Process Temperature                  | -40 to +200 °C (-40 to +400 °F)                                                                            | -196 to +200 °C (-320 to +400 °F)                                                                                | -196 to +450 °C (-320 to +850 °F)                                                                                              |
| Max. Process Pressure ③              | 70 bar @ +20 °C (1000 psi @ +70 °F)                                                                        | 431 bar @ +20 °C (6250 psi @ +70 °F)                                                                             | 431 bar @ +20 °C (6250 psi @ +70 °F)                                                                                           |
| Dielectric Range                     | 1.7 to 100 ®                                                                                               | 1.7 to 100 ®                                                                                                     | 1.7 to 100 ®                                                                                                                   |
| Vacuum Service ®                     | Negative Pressure,<br>but no hermetic seal                                                                 | Full Vacuum                                                                                                      | Full Vacuum                                                                                                                    |
| Viscosity                            | 10,000cP (mPa.s)                                                                                           | 10,000cP (mPa.s)                                                                                                 | 10,000cP (mPa.s)                                                                                                               |
| Media Coating                        | Maximum Error 10 % of coated length (% Error is dependent on dielectric and thickness)                     | Maximum Error 10 % of coated length (% Error is dependent on dielectric and thickness)                           | Maximum Error 10 % of coated length (% Error is dependent on dielectric and thickness)                                         |

Other o-ring materials available upon request.
 Transition zones (areas with reduced accuracy) are dielectric dependent. It is recommended to set the 0-100 % measuring range outside of the transition zones.
 Refer to chart on page 16.
 ECLIPSE probes containing o-rings can be used for vacuum (negative pressure) service, but only those probes with glass seal are hermetically sealed to <10-8 cc/sec @ 1 atmosphere helium.</li>
 Can be reduced to 75 mm (3") when lower accuracy is acceptable.
 1.2 minimum dielectric when end of probe analysis is enabled.
 Overfill canability can be achieved with software.

 $<sup>\</sup>ensuremath{\mathfrak{D}}$  Overfill capability can be achieved with software.

# FLEXIBLE PROBES FOR LIQUIDS MATRIX

|                                       | 7y1                                                                                    | <b>7</b> y3                                                                            |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|
| Description                           | Single Flexible<br>Standard Temperature                                                | Single Flexible<br>High Pressure                                                       |  |  |
| Application                           | Level                                                                                  | Level                                                                                  |  |  |
| Installation                          | Tank                                                                                   | Tank                                                                                   |  |  |
| Overfill Safe ®                       | No                                                                                     | No                                                                                     |  |  |
| Materials — Cable                     | 316 (1.4401)<br>(optional PFA coating)                                                 | 316 (1.4401)                                                                           |  |  |
| Process Seal                          | Teflon® TFE with Viton® o-rings①                                                       | Hermetic Glass Ceramic                                                                 |  |  |
| Probe Outside Diameter                | 5 mm (0.19")                                                                           | 5 mm (0.19")                                                                           |  |  |
| Process Connection  Threaded  Flanged | 2" NPT or 2" BSP<br>Various ANSI, EN1092, and<br>proprietary flanges                   | 2" NPT or 2" BSP<br>Various ANSI, EN1092, and<br>proprietary flanges                   |  |  |
| Available Probe Length                | 1 to 30 m (3 to 100')                                                                  | 1 to 30 m (3 to 100')                                                                  |  |  |
| Transition Zones ②  Top Bottom        | 45 cm (18")<br>30 cm (12")                                                             | 45 cm (18")<br>30 cm (12")                                                             |  |  |
| Process Temperature                   | -40 to +200 °C (-40 to +400 °F)                                                        | -196 to +200 °C (-320 to +400 °F)                                                      |  |  |
| Max. Process Pressure ③               | 70 bar @ +20°C (1000 psi @ +70 °F)                                                     | 431 bar @ +20 °C (6250 psi @ +70 °F)                                                   |  |  |
| Dielectric Range ®                    | 1.7 to 100                                                                             | 1.7 to 100                                                                             |  |  |
| Vacuum Service 4                      | Negative Pressure,<br>but no hermetic seal                                             | Full Vacuum                                                                            |  |  |
| Viscosity                             | 10,000 (mPa.s)                                                                         | 10,000 (mPa.s)                                                                         |  |  |
| Media Coating                         | Maximum Error 10 % of coated length (% Error is dependent on dielectric and thickness) | Maximum Error 10 % of coated length (% Error is dependent on dielectric and thickness) |  |  |

① Other o-ring materials available upon request.

② Transition zones (areas with reduced accuracy) are dielectric dependent. It is recommended to set the 0-100 % measuring range outside of the transition zones.

<sup>3</sup> Refer to chart on page 16.

ECLIPSE probes containing o-rings can be used for vacuum (negative pressure) service, but only those probes with glass seal are hermetically sealed to <10<sup>-8</sup> cc/sec @ 1 atmosphere helium.
 1.2 minimum dielectric when end of probe analysis is enabled.

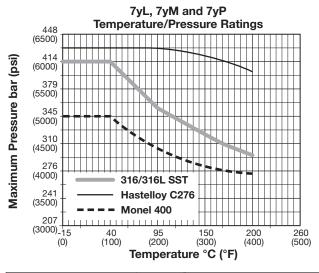
Overfill capability can be achieved with software.

# FLEXIBLE PROBES FOR LIQUIDS MATRIX CONTINUED

|                                       | <b>7y</b> 6                                                                            | 7y7                                                                                    |
|---------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Description                           | Single Flexible<br>HTHP                                                                | Twin Flexible<br>Standard Temperature                                                  |
| Application                           | Level                                                                                  | Level/Interface                                                                        |
| Installation                          | Tank/Chamber                                                                           | Tank/Chamber                                                                           |
| Overfill Safe                         | No                                                                                     | No                                                                                     |
| Materials - Cable                     | 316 (1.4401)                                                                           | 316 SS (1.4401) Cables with FEP Webbing                                                |
| Process Seal ①                        | Hermetic Glass Ceramic                                                                 | Teflon® TFE with Viton® o-rings                                                        |
| Cable Outside Diameter                | 5 mm (0.19")                                                                           | (2) 6 mm (0.25")                                                                       |
| Process Connection  Threaded  Flanged | 2" NPT or 2" BSP<br>Various ANSI, EN, and<br>proprietary flanges                       | 2" NPT or 2" BSP<br>Various ANSI, EN, and<br>proprietary flanges                       |
| Available Probe Length                | 1 to 30 m (3 to 100')                                                                  | 1 to 30 m (3 to 100')                                                                  |
| Transition Zones ②  Top Bottom        | 45 cm (18")<br>30 cm (12")                                                             | 45 cm (18")<br>30 cm (12")                                                             |
| Process Temperature                   | -196 to +450 °C (-320 to +850 °F)                                                      | -40 to +200 °C (-40 to +400 °F)                                                        |
| Max. Process Pressure 3               | 431 bar @ +20 °C (6250 psi @ +70 °F)                                                   | 70 bar @ +20 °C (1000 psi @ +70 °F)                                                    |
| Dielectric Range ®                    | 1.7 to 100                                                                             | 1.7 to 100                                                                             |
| Vacuum Service 4                      | Full Vacuum                                                                            | Negative Pressure,<br>but no hermetic seal                                             |
| Viscosity                             | 10,000 (mPa.s)                                                                         | 1500 (mPa.s)                                                                           |
| Media Coating                         | Maximum Error 10 % of coated length (% Error is dependent on dielectric and thickness) | Maximum Error 10 % of coated length (% Error is dependent on dielectric and thickness) |

<sup>Other o-ring materials available upon request.
Transition zones (areas with reduced accuracy) are dielectric dependent. It is recommended to set the 0-100 % measuring range outside of the transition zones.

Refer to chart on page 16.


ECLIPSE probes containing o-rings can be used for vacuum (negative pressure) service, but only those probes with glass seal are hermetically sealed to <10-8 cc/sec @ 1 atmosphere helium.

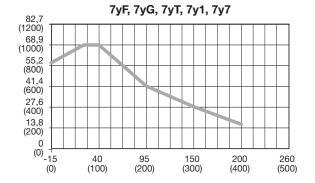
1.2 minimum dielectric when end of probe analysis is enabled.</sup> 

# FLEXIBLE PROBES FOR SOLIDS MATRIX

|                                | 7y2                                                                               | <b>7y5</b>                                                                        |
|--------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Description                    | Single Flexible Standard Temp.                                                    | Twin Flexible Standard Temp.                                                      |
| Application                    | Level                                                                             | Level                                                                             |
| Installation                   | Tank                                                                              | Tank                                                                              |
| Overfill Safe                  | No                                                                                | No                                                                                |
| Pull Down Force                | 1360 Kg (3000 lbs.)                                                               | 1360 Kg (3000 lbs)                                                                |
| Materials - Cable              | 316 (1.4401)                                                                      | 316 (1.4401)                                                                      |
| Probe Outside Diameter         | 5 mm (0.19")                                                                      | (2) 6 mm (0.25")                                                                  |
| <b>Process Connection</b>      |                                                                                   |                                                                                   |
| Threaded<br>Flanged            | 2" NPT or 2" BSP<br>Various ANSI, EN1092, and proprietary flanges                 | 2" NPT or 2" BSP<br>Various ANSI, EN1092, and proprietary flanges                 |
| Available Probe Length         | 1 to 30 m (3 to 100')                                                             | 1 to 30 m (3 to 100')                                                             |
| Transition Zones ①  Top Bottom | 45 cm (18")<br>30 cm (12")                                                        | 45 cm (18")<br>30 cm (12")                                                        |
| Dielectric Range ②             | 4 to 100                                                                          | 1.9 to 100                                                                        |
| Vacuum Service 3               | Negative Pressure, but no hermetic seal                                           | Negative Pressure, but no hermetic seal                                           |
| Viscosity                      | 10,000 (mPa.s)                                                                    | 10,000 (mPa.s)                                                                    |
| Media Coating                  | Max. Error 10 % of coated length (% Error is dependent on dielectric & thickness) | Max. Error 10 % of coated length (% Error is dependent on dielectric & thickness) |

- ① Transition zones (areas with reduced accuracy) are dielectric dependent. It is recommended to set the 0-100 % measuring range outside of the transition zones.
- ② 1.2 minimum dielectric when end of probe analysis is enabled.
- © ECLIPSE probes containing o-rings can be used for vacuum (negative pressure) service, but only those probes with glass seal are hermetically sealed (helium leak <10°cc/sec @ 1 atmos.).




| 448           |                                                                                                              | Te                                                                                                           | -                                                                                                                                       |                                                                                              | •                                                                                                                            | -                                                                                                                |                                                                                                        |                                                                                                                                  | -                                                                                                              | <b>S</b>                                                                                                                                                                                             |                                                                                                                                                                            |                                                                                                                                                                                                     |
|---------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (6500)        |                                                                                                              |                                                                                                              |                                                                                                                                         |                                                                                              |                                                                                                                              |                                                                                                                  |                                                                                                        | 316                                                                                                                              | 316L                                                                                                           | SS                                                                                                                                                                                                   | Τ.                                                                                                                                                                         |                                                                                                                                                                                                     |
| 414<br>(6000) |                                                                                                              |                                                                                                              |                                                                                                                                         |                                                                                              |                                                                                                                              |                                                                                                                  |                                                                                                        |                                                                                                                                  |                                                                                                                |                                                                                                                                                                                                      | 276                                                                                                                                                                        |                                                                                                                                                                                                     |
| 379<br>(5500) |                                                                                                              |                                                                                                              |                                                                                                                                         |                                                                                              |                                                                                                                              |                                                                                                                  |                                                                                                        |                                                                                                                                  |                                                                                                                |                                                                                                                                                                                                      | +                                                                                                                                                                          |                                                                                                                                                                                                     |
| 345<br>(5000) |                                                                                                              |                                                                                                              |                                                                                                                                         |                                                                                              |                                                                                                                              |                                                                                                                  |                                                                                                        |                                                                                                                                  |                                                                                                                |                                                                                                                                                                                                      |                                                                                                                                                                            | -                                                                                                                                                                                                   |
| 310<br>(4500) |                                                                                                              |                                                                                                              |                                                                                                                                         |                                                                                              | W                                                                                                                            | H                                                                                                                |                                                                                                        |                                                                                                                                  |                                                                                                                |                                                                                                                                                                                                      | $\frac{1}{1}$                                                                                                                                                              |                                                                                                                                                                                                     |
| 276<br>(4000) |                                                                                                              |                                                                                                              |                                                                                                                                         | * \                                                                                          |                                                                                                                              | -                                                                                                                |                                                                                                        |                                                                                                                                  |                                                                                                                |                                                                                                                                                                                                      |                                                                                                                                                                            |                                                                                                                                                                                                     |
| 241<br>(3500) |                                                                                                              |                                                                                                              |                                                                                                                                         | $\prod$                                                                                      |                                                                                                                              |                                                                                                                  |                                                                                                        |                                                                                                                                  |                                                                                                                |                                                                                                                                                                                                      | $\frac{1}{1}$                                                                                                                                                              | 1                                                                                                                                                                                                   |
|               |                                                                                                              |                                                                                                              |                                                                                                                                         | Ter                                                                                          | (400                                                                                                                         | ))                                                                                                               | , ,                                                                                                    |                                                                                                                                  | 425<br>(800)                                                                                                   | <b>\</b>                                                                                                                                                                                             |                                                                                                                                                                            | 40<br>(000)                                                                                                                                                                                         |
|               | (6500)<br>414<br>(6000)<br>379<br>(5500)<br>345<br>(5000)<br>276<br>(4000)<br>241<br>(3500)<br>207<br>(3000) | (6500)<br>414<br>(6000)<br>379<br>(5500)<br>345<br>(5000)<br>310<br>(4500)<br>276<br>(4000)<br>241<br>(3500) | 448<br>(6500)<br>414<br>(6000)<br>379<br>(5500)<br>345<br>(5000)<br>310<br>(4500)<br>276<br>(4000)<br>241<br>(3500)<br>207<br>(3000)_15 | 448 (6500) 414 (6000) 379 (5500) 345 (5000) 310 (4500) 276 (4000) 241 (3500) 207 (3000) 5 95 | 448 (6500)<br>414 (6000)<br>379 (5500)<br>345 (5000)<br>310 (4500)<br>276 (4000)<br>241 (3500)<br>207 (3000) 15 95 (0) (200) | Temperature (6500) 414 (6000) 379 (5500) 345 (5000) 310 (4500) 276 (4000) 241 (3500) 207 (3000)_15 95 200 (4000) | Temperature/F (6500) 414 (6000) 379 (5500) 345 (5000) 276 (4000) 241 (3500) 207 (3000)_15 95 200 (400) | Temperature/Pressur (6500) 414 (6000) 379 (5500) 345 (5000) 276 (4000) 241 (3500) 207 (3000)_15 95 200 315 (0) (200) (400) (600) | Temperature/Pressure Ra (6500) 414 (6000) 379 (5500) 345 (5000) 276 (4000) 241 (3500) 207 (3000)_15 95 200 315 | (6500)<br>414<br>(6000)<br>(7500)<br>379<br>(5500)<br>345<br>(5000)<br>310<br>(4500)<br>276<br>(4000)<br>241<br>(3500)<br>207<br>(3000) <sub>-15</sub> 95 200 315 425<br>(0) (200) (400) (600) (800) | Temperature/Pressure Ratings  316/316L SS  414 (6000)  379 (5500)  345 (5000)  276 (4000)  276 (4000)  241 (3500)  207 (3000)15 95 200 315 425 (0) (200) (400) (600) (800) | Temperature/Pressure Ratings  316/316L SST  Hastelloy C276.  (6000)  379 (5500)  345 (5000)  276 (4000)  276 (4000)  241 (3500)  207 (3000)  (3000)  (3000)  (3000)  (200)  (400) (600) (800) (100) |

| Hi         | gh Press | ure Probes |       | Low Pressure  | Hig        | Low Pressure |           |       |               |
|------------|----------|------------|-------|---------------|------------|--------------|-----------|-------|---------------|
| Temp. SST  |          | Hastelloy  | Monel | All Materials | Temp.      | SST          | Hastelloy | Monel | All Materials |
| -40 (-40)  | 6000     | 6250       | 5000  | 750           | 315 (+600) | 3760         | 5040      | 3940  | _             |
| 20 (+70)   | 6000     | 6250       | 5000  | 1000          | 345 (+650) | 3680         | 4905      | 3940  | _             |
| 40 (+100)  | 6000     | 6250       | 5000  | 1000          | 370 (+700) | 3620         | 4730      | 3920  | _             |
| 95 (+200)  | 5160     | 6250       | 4380  | 650           | 400 (+750) | 3560         | 4430      | 3880  | _             |
| 150 (+300) | 4660     | 6070       | 4080  | 400           | 425 (+800) | 3520         | 4230      | 3820  | _             |
| 200 (+400) | 4280     | 5820       | 3940  | 270           | 450 (+850) | 3480         | 4060      | 3145  | _             |
| 260 (+500) | 3980     | 5540       | 3940  | _             |            |              |           |       |               |

#### NOTES:

- $^{\circ}$  7yS steam probes are rated to 155 bar (2250 psi) @ +345 °C (+650 °F)  $^{\circ}$  7y3, 7y6 HTHP flexible probes:

- Pressure is limited by the chamber
   7y2, 7y5 bulk solids probes: 3,45 bar (50 psi) to +65 °C (+150 °F)
- High pressure probes with threaded fittings are rated as follows: 7yD, 7yN, 7yP and 7y3 probes with threaded fittings have 248 bar (3600 psi) rating. 7yM probes with threaded fittings have 139 bar (2016 psi) rating.



# O-RING (SEAL) SELECTION CHART

# **O-RING/SEAL SPECIFICATIONS**

| Code   | "O"-Ring<br>Material                        | Max. Process Temperature                | Min. Process<br>Temperature | Max. Process<br>Pressure                    | Not Recommended For<br>Applications                                                                                                                                             | Recommended for Applications                                                                                                                                                                                                   |
|--------|---------------------------------------------|-----------------------------------------|-----------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0      | Viton <sup>®</sup> GFLT                     | 200 °C @ 16 bar<br>(400 °F @ 230 psi)   | -40 °C<br>(-40 °F)          | 70 bar @ 20 °C<br>(1000 psi @<br>70 °F)     | Ketones (MEK, acetone),<br>skydrol fluids, amines,<br>anhydrous ammonia, low<br>molecular weight esters and<br>ethers, hot hydrofluoric or<br>chlorosulfuric acids, sour<br>HCs | General purpose, ethylene                                                                                                                                                                                                      |
| 1      | EPDM                                        | 120 °C @14 bar<br>(250 °F @ 200 psi)    | -50 °C<br>(-60 °F)          | 70 bar @ 20 °C<br>(1000 psi @<br>70 °F)     | Petroleum oils, di-ester base lubricant, steam                                                                                                                                  | Acetone, MEK, skydrol fluids                                                                                                                                                                                                   |
| 2      | Kalrez <sup>®</sup> 4079                    | 200 °C @ 16 bar<br>(400 °F @ 232 psi)   | -40 °C<br>(-40 °F)          | 70 bar @ 20 °C<br>(1000 psi @<br>70 °F)     | Hot water/steam, hot aliphatic amines, ethylene oxide, propylene oxide                                                                                                          | Inorganic and organic acids (including<br>hydro fluids and nitric), aldehydes,<br>ethylene, organic oils, blycols, silicone<br>oils, vinegar, sour HCs                                                                         |
| 3      | <b>HSN</b><br>(Highly Saturated<br>Nitrile) | 135 °C @ 22 bar<br>(275 °F @ 320 psi)   | -20 °C<br>(-4 °F)           | 70 bar @ 20 °C<br>(1000 psi @<br>70 °F)     | Halogenated HCs, nitro HCs, phosphate ester hydraulic fluids, ketones (MEK, acetone), strong acids, ozone, automotive brake fluid, steam                                        | NACE applications                                                                                                                                                                                                              |
| 4      | Buna-N                                      | 135 °C @ 22 bar<br>(275 °F @ 320 psi)   | -20 °C<br>(-4 °F)           | 70 bar @ 20 °C<br>(1000 psi @<br>70 °F)     | Halogenated HCs, nitro HCs, phosphate ester hydraulic fluids, ketones (MEK, acetone), strong acids, ozone, automotive brake fluid                                               | General purpose sealing,<br>petroleum oils and fluids, cold<br>water, silicone greases and oils,<br>di-ester base lubricants, ethylene<br>glycol base fluids                                                                   |
| 5      | Neoprene <sup>®</sup>                       | 150 °C @ 20 bar<br>(300 °F @ 290 psi)   | -55 °C<br>(-65 °F)          | 70 bar @ 20 °C<br>(1000 psi @<br>70 °F)     | Phosphate ester fluids, ketones (MEK, acetone)                                                                                                                                  | Refrigerants, high anline point petroleum oils, silicate ester lubricants                                                                                                                                                      |
| 6      | Chemraz <sup>®</sup> 505                    | 200 °C @ 14 bar<br>(400 °F @ 200 psi)   | -20 °F<br>(-30 °C)          | 70 bar @ 20 °C<br>(1000 psi @<br>70 °F)     | Acetaldehyde, ammonia + lithium metal solution, butyraldehyde, di-water, freon, ethylene oxide, liquors, isobutyraldehyde                                                       | Inorganic and organic acids,<br>alkalines, ketones, esters,<br>aldehydes, fuels                                                                                                                                                |
| 7      | Polyurethane                                | 95 °C @ 29 bar<br>(200 °F @ 420 psi)    | -55 °C<br>(-65 °F)          | 70 bar @ 20 °C<br>(1000 psi @<br>70 °F)     | Acids, Ketones, chlorinated HCs,                                                                                                                                                | Hydraulic systems, petroleum oils,<br>HC fuel, oxygen, ozone                                                                                                                                                                   |
| 8      | Aegis PF128 ①                               | 200 °C @ 16 bar<br>(400 °F @ 232 psi)   | -20 °C<br>(-4 °F)           | 70 bar @ 20 °C<br>(1000 psi @<br>70 °F)     | Black liquor, freon 43, freon<br>75, galden, KEL-F liquid,<br>molten potassium, molten<br>sodium                                                                                | Inorganic and organic acids<br>(including hydro fluids and nitric),<br>aldehydes, ethylene, organic oils,<br>gycols, silicone oils, vinegar, sour<br>HCs, steam, amines, ethylene oxide,<br>propylene oxice, NACE applications |
| А      | Kalrez <sup>®</sup> 6375                    | 200 °C @ 16 bar<br>(400 °F @ 232 psi)   | -40 °C<br>(-40 °F)          | 70 bar @ 20 °C<br>(1000 psi @<br>70 °F)     | Hot water/steam, hot aliphatic amines, ethylene oxide, propylene oxide                                                                                                          | Inorganic and organic acids (including<br>hydro fluids and nitric), aldehydes,<br>ethylene, organic oils, blycols,<br>silicone oils, vinegar, sour HCs                                                                         |
| В      | Kalrez <sup>®</sup> 6375                    | 200 °C @ 16 bar<br>(400 °F @ 232 psi)   | -40 °C<br>(-40 °F)          | 70 bar @ 20 °C<br>(1000 psi @<br>70 °F)     | Hot water/steam, hot aliphatic amines, ethylene oxide, propylene oxide                                                                                                          | Hydrofluoric acid                                                                                                                                                                                                              |
| D or N | Glass Ceramic<br>Alloy                      | 450 °C @ 248 bar<br>(850 °F @ 3600 psi) | -195 °C<br>(-320 °F)        | 431 bar @<br>20 °C<br>(6250 psi @<br>70 °F) | Hot alkaline solutions HF acid,<br>media with ph>12,<br>direct exposure to<br>saturated steam                                                                                   | General high temperature/high pressure applications, hydrocarbons, full vacuum (hermetic), ammonia, chlorine                                                                                                                   |

① Maximum +150 °C (+300 °F) for use on steam.

#### REPLACEMENT OF DISPLACER TRANSMITTERS

ECLIPSE has proven to be the ideal replacement for existing torque tube transmitters. In numerous applications worldwide, customers have found the performance of ECLIPSE Guided Wave Radar transmitters to be superior to that of antiquated torque tube transmitters.

There are several benefits to using the ECLIPSE Model 706 as a replacement for torque tube transmitters:

#### • Cost:

The cost of a new Model 706 transmitter cost is comparable to rebuilding an aging torque tube.

#### • Installation:

No field calibration is necessary. The Model 706 transmitter can be configured in minutes with no level movement. (Complete factory pre-configuration is available, which can further decrease the installation effort).

#### • Performance:

The ECLIPSE Model 706 is unaffected by changes in specific gravity and has no moving parts that can wear and lose tolerance.

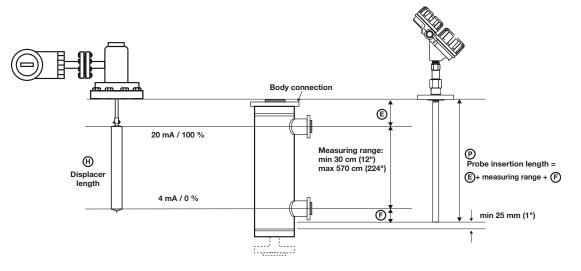
#### • Ease of replacement:

Proprietary and standard ANSI flanges are offered on all ECLIPSE Model 706 probes so existing chamber/cages can be used.

In order to match the proper ECLIPSE transmitter with the proper external cage, consider the following:

#### • Type of application:

Use the proper GWR probe for the application, see pages 7 and 10 through 16.


#### • Overfill proof:

For optimum performance, use an Overfill-safe probe in all chamber applications.

**Note:** "Overfill" occurs when the level rises above the maximum range of operation. *Some GWR probes may provide erroneous output in this zone unless an optimal, impedance-matched design is used.* 

#### • Minimum Cage Size:

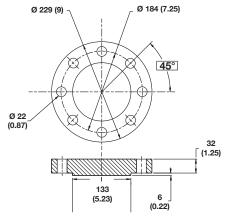
- Coaxial or Caged Coaxial probes: 2" minimum
- Enlarged Coaxial probes: 3" minimum
- Twin Cable probes: 4" minimum

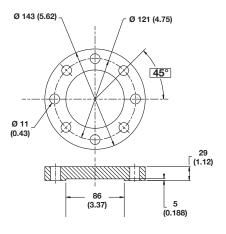


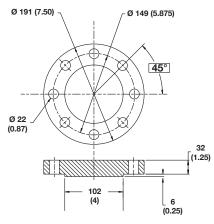




#### Recommended probe length for replacing displacer transmitters


The table below helps to define the GWR probe length for the most common displacer transmitters. Refer to the proprietary flange selection guide.


| Manufacturer            | Туре                   | Process Connection | Displacer Length mm (inches) | Probe Length ①<br>mm (inches) |
|-------------------------|------------------------|--------------------|------------------------------|-------------------------------|
| MAGNETROL               | EZ & PN Modulevel®     | ANSI/EN flange     | ≥ 356 (14)                   | Displacer + 178 (7)           |
| Masoneilan®             | Series 1200            | Proprietary flange | ≥ 356 (14)                   | Displacer + 203 (8)           |
| wasonellan <sup>e</sup> | Series 1200            | ANSI/EN flange     | ≥ 406 (16)                   | Displacer + 203 (8)           |
| Fisher® series          | 249B, 259B, 249C cages | Proprietary flange | ≥ 356 (14)                   | Displacer + 254 (10)          |
| 2300 & 2500             | other cages            | ANSI flange        | ≥ 356 (14)                   | consult factory               |
| Eckardt®                | Series 134, 144        | ANSI/EN flange     | ≥ 356 (14)                   | consult factory               |
| Tolaro Koico®           | FST-3000               | ANSI/EN flange     | H = 300 (11.8)               | Displacer + 229 (9)           |
| Tokyo Keiso®            | F31-3000               | ANSI/EN flange     | ≥ H = 500 (19.7)             | Displacer + 229 (9)           |


 $<sup>\</sup>ensuremath{\textcircled{1}}$  Round down resulting calculation to the nearest inch.

#### PROPRIETARY FLANGES

# mm (INCHES)







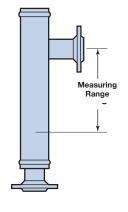
Fisher 249B/259B (600 lbs.), carbon steel

Fisher 249C (600 lbs.), 316 stainless steel

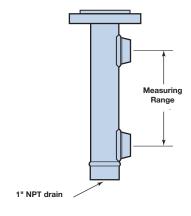
Masoneilan (600 lbs.), carbon steel

#### MAGNETROL CHAMBERS

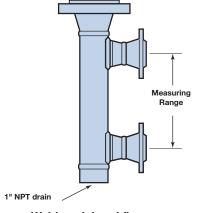
A brief description of the MAGNETROL chamber offering follows. For more details, refer to MAGNETROL Sales Bulletin BE57-140.


MAGNETROL has a long tradition in offering cost-effective chambers. The MAGNETROL external chamber is a self-contained cage designed for use with our top mounting level transmitters or switches. Quality construction and a wide selection of configurations make this cage an ideal means of utilizing the power of Guided Wave Radar without mounting directly into the process vessel.




MAGNETROL chambers are available with a wide variety of options, and can be manufactured to comply with various regulations such as:

- Commercial Design
- ASME B31.1 Design Code
- ASME B31.3 Design Code
- NACE Design Code
- PED


Some Model 706 probes can be installed into chambers as small as 2". When a new chamber is required, it can be ordered together with a factory pre-configured Model 706 for a true "plug and play" installation.



**Sealed Chamber** 



Slip-on head flange



Weld neck head flange









These units are in compliance with the EMC-directive 2014/30/EU, the PED-directive 2014/68/EU and the ATEX directive 2014/34/EU. IEC 60079-0: 2001 IEC 60079-15: 2010 IEC 60079-26: 2006

#### **Explosion Proof (with intrinsically Safe Probe)**

#### **US/Canada:**

Class I, Div 1, Group B, C and D, T4
Class I, Zone 1 AEx d/ia [ia IIC Ga] IIB + H2 T4 Gb/Ga
Class I, Zone 1 Ex d/ia [ia IIC Ga] IIB + H2 T4 Gb/Ga
Ta = -40°C to +70°C
Type 4X, IP67

#### Flame Proof

ATEX – FM14ATEX0041X: II 2/1 G Ex d/ia [ia IIC Ga] IIB + H2 T6 to T1 Gb/Ga Ta = -40 $^{\circ}$ C to +70 $^{\circ}$ C IP67

#### **IEC- IECEx FMG 14.0018X:**

Ex d/ia [ia IIC Ga] IIB + H2 T6 to T1 Gb/Ga Ta = -40°C to +70°C IP67

#### Non-Incendive

#### US/Canada:

Class I, II, III, Division 2, Group A, B, C, D, E, F, G, T4 Class I, Zone 2 AEx ia/nA [ia Ga] IIC T4 Ga/Gc Class I, Zone 2 Ex ia/nA [ia Ga] IIC T4 Ga/Gc Ta = -40°C to +70°C Type 4X, IP67

#### **ATEX**

II 1/3 G Ex ia/nA [ia Ga] IIC T4 Ga/Gc Ta =  $-15^{\circ}$ C to  $+70^{\circ}$ C IP67

#### IEC - IECEx FMG 14.00018X:

Ex ia/nA [ia Ga] IIC T4 Ga/Gc Ta = -15°C to +70°C IP67

#### **Intrinsically Safe**

#### **US/Canada:**

Class I, II, III, Div 1, Group A, B, C, D, E, F, G, T4, Class I, Zone 0 AEx ia IIC T4 Ga Class I, Zone 0 Ex ia IIC T4 Ga Ta =-40 $^{\circ}$ C to + 70 $^{\circ}$ C Type 4X, IP67

#### ATEX - FM14ATEX0041X:

II 1 G Ex ia IIC T4 Ga Ta = -40°C to +70°C IP67

#### IEC - IECEx FMG 14.0018X:

Ex ia IIC T4 Ga  $Ta = -40^{\circ}C$  to  $+70^{\circ}C$ IP67

#### **Dust Ignition Proof**

#### US/Canada:

Class II, III, Division 1, Group E, F and G, T4 Ta =  $-40^{\circ}$ C to  $+70^{\circ}$ C Type 4X, IP67

#### ATEX - FM14ATEX0041X:

II 1/2 D Ex ia/tb [ia Da] IIIC T85°C to T450°C Da/Db Ta = -15°C to +70°C IP67

#### IEC – IECEx FMG 14.0018X:

Ex ia tb [ia Da] IIIC T85°C to T450°C Db Ex ia IIIC T85°C to T450°C Da Ta = -15°C to +70°C IP67

The following approval standards are applicable:

FM3600:2011, FM3610:2010, FM3611:2004, FM3615:2006, FM3616:2011, FM3810:2005, ANSI/ISA60079-0:2013, ANSI/ISA 60079-1:2009, ANSI/ISA 60079-11:2013, ANSI/ISA 60079-15:2012, ANSI/ISA 60079-26:2011, NEMA 250:2003, ANSI/IEC 60529:2004, C22.2 No. 0.4:2009, C22.2 No. 0.5:2008, C22.2 No. 30:2007, C22.2 No. 94:2001, C22.2 No. 157:2012, C22.2 No. 213:2012, C22.2 No. 1010.1:2009, CAN/CSA 60079-0:2011, CAN/CSA 60079-1:2011, CAN/CSA 60079-11:2012, C22.2 No. 60529:2005, EN60079-0:2012, EN60079-1:2007, EN60079-11:2012, EN60079-15:2010, EN60079-26:2007, EN60079-31:2009, EN60529+A1:1991-2000, IEC60079-0:2011, IEC60079-1:2007, IEC60079-11:2011, IEC60079-15:2010, IEC60079-26:2006, IEC60079-31:2008

#### **Special Conditions of Use**

- 1. The enclosure contains aluminum and is considered to present a potential risk of ignition by impact or friction. Care must be taken during installation and use to prevent impact or friction.
- The risk of electrostatic discharge shall be minimized at installation, following the directions given in the instructions.
- 3. Contact the original manufacturer for information on the dimensions of the flameproof joints.
- 4. For installation with ambient temperature of +70 °C, refer to the manufacturer's instructions for guidance on proper selection of conductors.
- 5. WARNING—Explosion Hazard: Do not disconnect equipment when flammable or combustible atmoshpere is present.
- 6. For IEC and ATEX: To maintain the T1 to T6 temperature codes, care shall be taken to ensure the enclosure temperature does not exceed +70 °C.
- 7. For U.S. and Canada: To maintain the T4 temperature code, care shall be taken to ensure the enclosure temperature does not exceed +70 °C.
- 8. Temperature codes for the ratings Ex d/ia [ia IIC] IIB+H2 and Ex ia/tb [ia] IIIC are defined by the following table:

| Process Temperature (PT) | Temperature Code-TCG (GAS) | Temperature Code-TCD (Dust) |
|--------------------------|----------------------------|-----------------------------|
| Up to 75°C               | Т6                         | TCD= PT+10K=85°C            |
| From 75°C to 90°C        | T5                         | TCD= PT+10K=100°C           |
| From 90°C to 120°C       | T4                         | TCD= PT+15K=135°C           |
| From 125°C to 185°C      | Т3                         | TCD= PT+15K=200°C           |
| From 185°C to 285°C      | T2                         | TCD= PT+15K=300°C           |
| From 285°C to 435°C      | T1                         | TCD= PT+15K=450°C           |

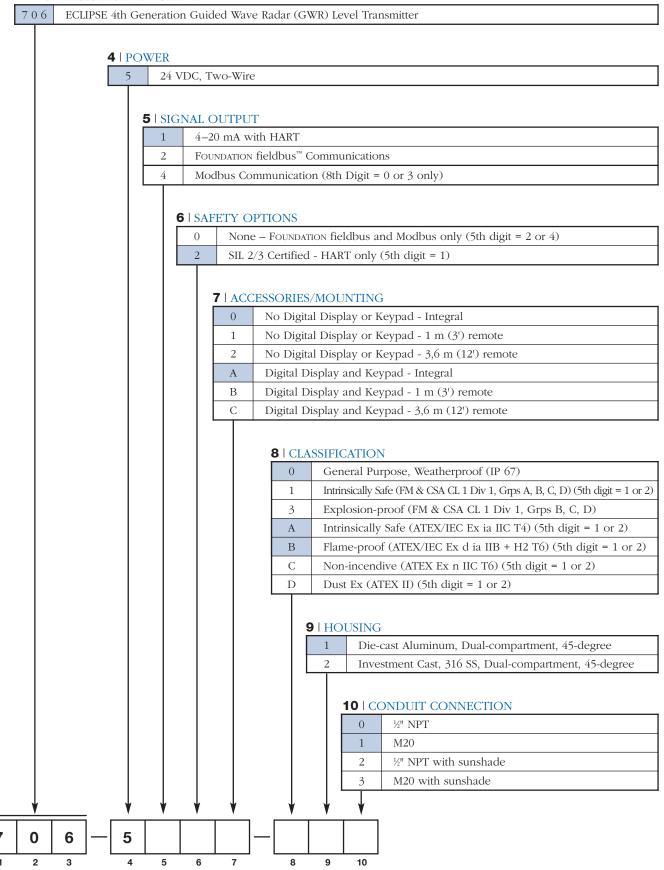
#### **Agency Specifications - Explosion Proof Installation**

Factory Sealed: This product has been approved by Factory Mutual Research (FM) and Canadian Standards Association (CSA) as a Factory Sealed device.

**NOTE:** Factory Sealed: No Explosion Proof conduit fitting (EY seal) is required within 18" of the transmitter. However, an Explosion Proof conduit fitting (EY seal) is required between the hazardous and safe areas.

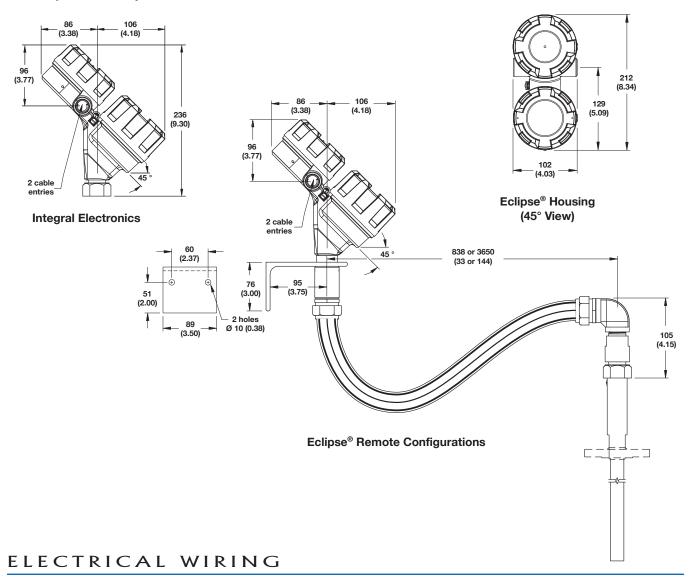


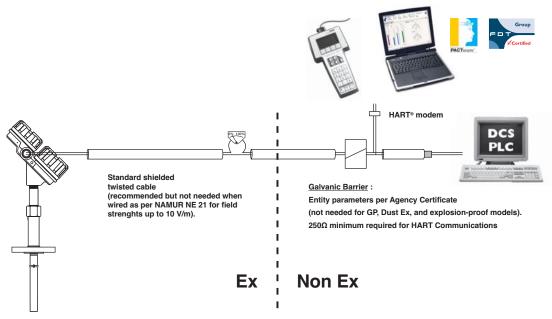
Several models are available for quick shipment, within max. 4 weeks after factory receipt of purchase order, through the Expedite Ship Plan (ESP).


Models covered by ESP service are conveniently colour coded in the selection data charts.

To take advantage of ESP, simply match the colour coded model number codes (standard dimensions apply).

ESP service may not apply to orders of five units or more. Contact your local representative for lead times on larger volume orders, as well as other products and options.


#### TRANSMITTER


#### 1 2 3 | BASIC MODEL NUMBER



# DIMENSIONS

# mm (inches)





#### ENLARGED COAXIAL PROBE

#### 1 | TECHNOLOGY

| 7 | ECLIPSE GWR Probes - Model 706 |
|---|--------------------------------|

#### **2** | MEASUREMENT SYSTEM

| I | 1 | English |
|---|---|---------|
| ( |   | Metric  |

#### **3** | CONFIGURATION/STYLE (RIGID)

| D | Enlarged Coaxial, High Temp/High Pressure: Overfill w/Glass Seal (+450 °C/+850 °F) — Available only with 10th digit N or D |
|---|----------------------------------------------------------------------------------------------------------------------------|
| Р | Enlarged Coaxial, High Pressure: Overfill w/Glass Seal (+200 °C/+400 °F) — Available only with 10th digit N or D           |
| Т | Enlarged Coaxial, Overfill Standard O-Ring Seal (+200 °C/+400 °F) — Not available with 10th digit N or D                   |

#### **4 5** | PROCESS CONNECTION – SIZE/TYPE (consult factory for other process connections) Threaded

| Tincau | -CG             | _ |     |                        |
|--------|-----------------|---|-----|------------------------|
| 4 1    | 2" NPT Thread ① |   | 4 2 | 2" BSP (G 2") Thread ① |

#### ANSI Flanges

| 4 3 | 2" | 150# ANSI RF ①  |
|-----|----|-----------------|
| 4 4 | 2" | 300# ANSI RF ①  |
| 4 5 | 2" | 600# ANSI RF ①  |
| 4 K | 2" | 600# ANSI RTJ ① |
| 5 3 | 3" | 150# ANSI RF    |
| 5 4 | 3" | 300# ANSI RF    |
| 5 5 | 3" | 600# ANSI RF    |
| 56  | 3" | 900# ANSI RF    |
| 57  | 3" | 1500# ANSI RF   |
| 58  | 3" | 2500# ANSI RF   |
| 5K  | 3" | 600# ANSI RTJ   |
| 5L  | 3" | 900# ANSI RTJ   |

| 5M  | 3" | 1500# ANSI RTJ |
|-----|----|----------------|
| 5N  | 3" | 2500# ANSI RTJ |
| 63  | 4" | 150# ANSI RF   |
| 6 4 | 4" | 300# ANSI RF   |
| 6 5 | 4" | 600# ANSI RF   |
| 66  | 4" | 900# ANSI RF   |
| 67  | 4" | 1500# ANSI RF  |
| 68  | 4" | 2500# ANSI RF  |
| 6K  | 4" | 600# ANSI RTJ  |

900# ANSI RTJ

#### 6M 4"1500# ANSI RTJ 6N 4" 2500# ANSI RTJ

6L

| EN Flang | ges |
|----------|-----|
|----------|-----|

| DΑ  | DN 50, PN 16    | EN 1092-1 TYPE A ①  |
|-----|-----------------|---------------------|
| DΒ  | DN 50, PN 25/40 | EN 1092-1 TYPE A ①  |
| D D | DN 50, PN 63    | EN 1092-1 TYPE B2 ① |
| DΕ  | DN 50, PN 100   | EN 1092-1 TYPE B2 ① |
| ЕА  | DN 80, PN 16    | EN 1092-1 TYPE A    |
| ЕВ  | DN 80, PN 25/40 | EN 1092-1 TYPE A    |
| ΕD  | DN 80, PN 63    | EN 1092-1 TYPE B2   |
| ЕЕ  | DN 80, PN 100   | EN 1092-1 TYPE B2   |
| ΕF  | DN 80, PN 160   | EN 1092-1 TYPE B2   |
| E G | DN 80, PN 250   | EN 1092-1 TYPE B2   |

| ЕН  | DN 80, PN 320    | EN 1092-1 TYPE B2 |
|-----|------------------|-------------------|
| ΕJ  | DN 80, PN 400    | EN 1092-1 TYPE B2 |
| FΑ  | DN 100, PN 16    | EN 1092-1 TYPE A  |
| FΒ  | DN 100, PN 25/40 | EN 1092-1 TYPE A  |
| F D | DN 100, PN 63    | EN 1092-1 TYPE B2 |
| FΕ  | DN 100, PN 100   | EN 1092-1 TYPE B2 |
| FF  | DN 100, PN 160   | EN 1092-1 TYPE B2 |
| F G | DN 100, PN 250   | EN 1092-1 TYPE B2 |
| FΗ  | DN 100, PN 320   | EN 1092-1 TYPE B2 |
| F J | DN 100, PN 400   | EN 1092-1 TYPE B2 |
|     |                  |                   |

# Torque Tube Mating Flanges @

| ТТ | 600# Fisher (249B/259B) in carbon steel – as per dimensions on page 18   |  |
|----|--------------------------------------------------------------------------|--|
| ΤU | 600# Fisher (249C) in stainless steel – as per dimensions on page 18     |  |
| UT | 600# Masoneilan flange in carbon steel – as per dimensions on page 18    |  |
| UU | 600# Masoneilan flange in stainless steel – as per dimensions on page 18 |  |

 $\, \oplus \,$  Confirm mounting conditions/nozzle diameter to ensure sufficient clearance. ② Always check dimensions if ANSI/EN flanges are not used.



# MODEL NUMBER CONTINUED

#### ENLARGED COAXIAL PROBE

#### | CONSTRUCTION CODES

| 0 | Industrial                                                               |
|---|--------------------------------------------------------------------------|
| K | ASME B31.1                                                               |
| L | ASME B31.3                                                               |
| M | ASME B31.3 & NACE MR0175/MR0103 — NOT available with carbon steel flange |
| N | NACE MR0175/MR0103 — NOT available with carbon steel flange              |

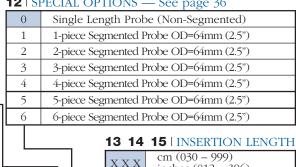
#### **7** | FLANGE OPTIONS — Offset flanges are only available with small coaxial probes

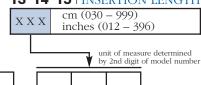
| None |
|------|
|      |

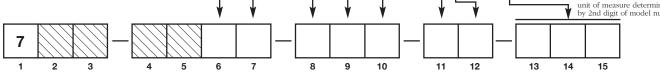
#### | MATERIAL OF CONSTRUCTION - FLANGE/NUT/ROD/INSULATION

| A | 316 SS/316L SS (Probe O.D. 45 mm (1.75"))                          |  |
|---|--------------------------------------------------------------------|--|
| В | Hastelloy C (Probe O.D. 49 mm (1.93"))                             |  |
| С | Monel (Probe O.D. 49 mm (1.93"))                                   |  |
| R | 316 SS/316L SS with Carbon Steel Flange (Probe O.D. 45 mm (1.75")) |  |
| S | Hastelloy C with Carbon Steel Flange (Probe O.D. 49 mm (1.93"))    |  |
| Т | Monel with Carbon Steel Flange (Probe O.D. 49mm (1.93"))           |  |

#### | SPACER MATERIAL


|   | 1 | TFE (+200 °C/+400 °F) — Available only with 3rd digit P or T — $\varepsilon_{\rm r} \ge 1.4$            |
|---|---|---------------------------------------------------------------------------------------------------------|
| l | 2 | PEEK HT — Available only with 3rd digit D (+345 °C/+650 °F) — $\varepsilon_{\rm r} \ge 1.4$             |
| l | 3 | Ceramic (High Temp. >+425 °C/+800 °F) — Available only with 3rd digit D — $\varepsilon_{\rm r} \ge 2.0$ |
| l | 4 | Celazole (+425 °C/+800 °F) — Available only with 3rd digit D — $\varepsilon_{\rm r} \ge 1.4$            |
| 1 | 5 | None - with metal shorting rod — $\mathcal{E}_r \ge 1.4$ — Future                                       |


#### | O-RING MATERIALS/SEAL OPTIONS


| 0 | Viton® GFLT — Available only with 3rd digit T                                                             |
|---|-----------------------------------------------------------------------------------------------------------|
| 2 | Kalrez® 4079 — Available only with 3rd digit T                                                            |
| 8 | Aegis PF 128 (NACE) — Available only with 3rd digit T                                                     |
| A | Kalrez 6375 — Available only with 3rd digit T                                                             |
| В | HF Acid Probe — Only available with 3rd digit T and 8th digit C                                           |
| D | None/Glass Ceramic Alloy (dual-seal design with annunciator fitting)—Only available with 3rd digit D or P |
| N | None/Glass Ceramic Alloy — Available only with 3rd digit D, P or S                                        |

#### | PROBE SIZE/ELEMENT TYPE/FLUSHING CONNECTION

| 0 Standard Enlarged Coaxial Probe |  | Standard Enlarged Coaxial Probe                    |
|-----------------------------------|--|----------------------------------------------------|
| 1                                 |  | Standard Enlarged Coaxial Probe with Flushing Port |
|                                   |  | <b>12</b>   SPECIAL OPTIONS — See page 36          |







# MODEL NUMBER

# SMALL COAXIAL PROBE

| Leenorma |                                            |                          |            |                                                        |                                      |
|----------|--------------------------------------------|--------------------------|------------|--------------------------------------------------------|--------------------------------------|
| TECHNO   | LIOGY LIPSE GWR Probes - Model 706         |                          |            |                                                        |                                      |
|          |                                            |                          |            |                                                        |                                      |
| I -      | SUREMENT SYSTEM                            |                          |            |                                                        |                                      |
| A        | English                                    |                          |            |                                                        |                                      |
| C        | Metric                                     |                          |            |                                                        |                                      |
| 3        | CONFIGURATION/STYLE (RIGID)                |                          |            |                                                        |                                      |
|          | D Small Coaxial, High Temp/High Pr         |                          |            |                                                        |                                      |
| 1 1      | P Small Coaxial, High Pressure: O          |                          |            |                                                        |                                      |
|          | S Small Coaxial, Saturated Steam (+300     |                          |            |                                                        |                                      |
|          | T Small Coaxial, Overfill Standard         |                          |            |                                                        |                                      |
|          | <b>4 5</b>   PROCESS CONNECTION – Threaded | SIZE/ I I PE (COIISUIT   | ractory .  | for other process co                                   | onnections)                          |
|          | 1 1 3/4" NPT Thread – Not availabl         | e with 3rd Digit D       | 2 2        | 1" DCD (C 1") Throo                                    | ıd – Not available with 3rd Digit    |
|          | 4 1 2" NPT Thread – Not available          |                          | 4 2        |                                                        | ad – Not available with 3rd Digit    |
|          | ANSI Flanges                               | Will Sta Digit o         | 7 2        | 2 B31 (G 2 ) Tillea                                    | d – Not available with Jid Digit     |
|          |                                            | ½" 2500# ANSI RF ③       | 5 3 3"     | 150# ANSI RF                                           | 6 3 4" 150# ANSI RF                  |
|          |                                            | ½" 2500# ANSI RTJ ③      | 5 4 3"     |                                                        | 6 4 4" 300# ANSI RF                  |
|          |                                            | 2" 150# ANSI RF          | 5 5 3"     |                                                        | 6 5 4" 600# ANSI RF                  |
|          |                                            | 2" 300# ANSI RF          | 5 6 3"     |                                                        | 6 6 4" 900# ANSI RF                  |
|          |                                            | 2" 600# ANSI RF          | 5 7 3"     |                                                        | 6 7 4" 1500# ANSI RF                 |
|          | 3 4 1 ½" 300# ANSI RF ③ 4 7 2              | 2" 900/1500# ANSI RF     | 58 3"      | 2500# ANSI RF                                          | 6 8 4" 2500# ANSI RF                 |
|          | 3 5 1 ½" 600# ANSI RF ③ 4 8 2              | 2" 2500# ANSI RF         | 5 K 3"     | 600# ANSI RTJ                                          | 6 K 4" 600# ANSI RTJ                 |
|          | 3 K 1½" 600# ANSI RTJ ③ 4 K 2              | 2" 600# ANSI RTJ         | 5 L 3"     | 900# ANSI RTJ                                          | 6 L 4" 900# ANSI RTJ                 |
|          | 3 7 1 ½" 900/1500# ANSI RF③ 4 M 2          | 2" 900/1500# ANSI RTJ    | 5 M 3"     | 1500# ANSI RTJ                                         | 6 M 4" 1500# ANSI RTJ                |
|          | 3 M   1 ½" 900/1500# ANSI RTJ③   4 N   2   | 2" 2500# ANSI RTJ        | 5 N 3"     | 2500# ANSI RTJ                                         | 6 N 4" 2500# ANSI RTJ                |
|          | EN Flanges                                 |                          |            |                                                        |                                      |
|          | B B DN 25, PN 16/25/40 EN 1092             | 2-1 TYPE A ① ③           | ЕА         | DN 80, PN 16                                           | EN 1092-1 TYPE A                     |
|          | B C DN 25, PN 63/100 EN 1092               |                          | ЕВ         | DN 80, PN 25/40                                        | EN 1092-1 TYPE A                     |
|          | C B DN 40, PN 16/25/40 EN 1092             |                          | ΕD         | DN 80, PN 63                                           | EN 1092-1 TYPE B2                    |
|          | C C DN 40, PN 63/100 EN 1092               |                          | ΕE         | DN 80, PN 100                                          | EN 1092-1 TYPE B2                    |
|          | 1                                          | 2-1 TYPE B2 ③            | E F        | DN 80, PN 160                                          | EN 1092-1 TYPE B2                    |
|          |                                            | 2-1 TYPE B2 ③            | E G        | DN 80, PN 250                                          | EN 1092-1 TYPE B2                    |
|          |                                            | 2-1 TYPE B2 ③            | ЕН         | DN 80, PN 320                                          | EN 1092-1 TYPE B2                    |
|          |                                            | 2-1 TYPE B2 ③            | EJ         | DN 80, PN 400                                          | EN 1092-1 TYPE B2                    |
|          |                                            | 2-1 TYPE A<br>2-1 TYPE A | F A<br>F B | DN 100, PN 16<br>DN 100, PN 25/40                      | EN 1092-1 TYPE A<br>EN 1092-1 TYPE A |
|          |                                            | 2-1 TYPE B2              | F D        | DN 100, PN 63                                          | EN 1092-1 TYPE B2                    |
|          |                                            | 2-1 TYPE B2              | FE         | DN 100, PN 100                                         | EN 1092-1 TYPE B2                    |
|          |                                            | 2-1 TYPE B2              | FF         | DN 100, PN 160                                         | EN 1092-1 TYPE B2                    |
|          |                                            | 2-1 TYPE B2              | F G        | DN 100, PN 250                                         | EN 1092-1 TYPE B2                    |
|          |                                            | 2-1 TYPE B2              | FΗ         | DN 100, PN 320                                         | EN 1092-1 TYPE B2                    |
|          | D J DN 50, PN 400 EN 1092                  | 2-1 TYPE B2              | F J        | DN 100, PN 400                                         | EN 1092-1 TYPE B2                    |
|          | Torque Tube Mating Flanges 2               | -                        |            |                                                        |                                      |
|          | T T 600# Fisher (249B/259B) ir             | n carbon steel – as per  | dimensi    | ons on page 18                                         |                                      |
|          | T U 600# Fisher (249C) in stain            | less steel – as per dim  | ensions o  | on page 18                                             |                                      |
|          | U T 600# Masoneilan flange in              |                          |            |                                                        |                                      |
|          | U U 600# Masoneilan flange in              |                          |            |                                                        |                                      |
|          |                                            |                          |            | ting conditions/nozzle diar dimensions if ANSI/EN flar | meter to ensure sufficient clearar   |
| 1        |                                            |                          |            | with 3rd digit 'D' or 'P'                              | igos are not useu.                   |
| ▼ ▼      | ▼ <u> </u>                                 |                          |            |                                                        |                                      |
| 7        |                                            | -                        | 7-         |                                                        |                                      |
| 1 2      | 3 4 5 6 7                                  | 8 9 10                   | )<br>      | 11 12 13                                               | 3 14 15                              |
|          |                                            | 10                       | -          |                                                        |                                      |

# MODEL NUMBER CONTINUED

#### SMALL COAXIAL PROBE

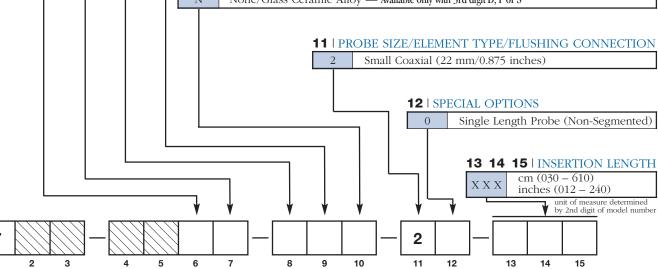
#### | CONSTRUCTION CODES

| 0 | Industrial                                                               |
|---|--------------------------------------------------------------------------|
| K | ASME B31.1 — NOT available with 4th digits T or U                        |
| L | ASME B31.3                                                               |
| M | ASME B31.3 & NACE MR0175/MR0103 — NOT available with carbon steel flange |
| N | NACE MR0175/MR0103 — NOT available with carbon steel flange              |

#### **7** | FLANGE OPTIONS — Offset flanges are only available with small coaxial probes

| 0 | None                                                                                              |
|---|---------------------------------------------------------------------------------------------------|
| 1 | Offset (For use with AURORA) — 4"/DN 100 Only available with 3rd digit P, S or T                  |
| 2 | Offset with ½" NPT Vent (For use with AURORA) — 4"/DN 100 Only available with 3rd digit P, S or T |
| 3 | Offset with ¾" NPT Vent (For use with AURORA) — 4"/DN 100 Only available with 3rd digit P, S or T |

#### | MATERIAL OF CONSTRUCTION - FLANGE/NUT/ROD/INSULATION


| A | 316 SS/316L SS                                                  |
|---|-----------------------------------------------------------------|
| В | Hastelloy C                                                     |
| С | Monel — Not available with 3rd Digit S                          |
| R | 316 SS/316L SS with Carbon Steel Flange                         |
| S | Hastelloy C with Carbon Steel Flange                            |
| Т | Monel with Carbon Steel Flange — Not available with 3rd Digit S |

#### | SPACER MATERIAL

| 1 | TFE (+200 °C/+400 °F) — Only available with 3rd digit P or T — $\varepsilon_{\rm r} \ge 1.4$                                                                                              |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | PEEK HT — Only available with 3rd digit D — $\varepsilon_{\rm r} \ge 1.4 \ (+345 \ ^{\circ}\text{C/+650 }^{\circ}\text{F}) \text{ or S } (+300 \ ^{\circ}\text{C/+575 }^{\circ}\text{F})$ |
| 3 | Ceramic (Temp. >+345 °C/+650 °F) — Only available with 3rd digit D — $\varepsilon_{\rm r} \ge 2.0$ or with 3rd digit S                                                                    |
| 5 | None - with metal shorting rod — $\varepsilon_{\rm r} \ge 1.4$ — Future                                                                                                                   |

#### | O-RING MATERIALS/SEAL OPTIONS

| 0 | Viton® GFLT — Only Available with 3rd digit T                                                             |
|---|-----------------------------------------------------------------------------------------------------------|
| 2 | Kalrez® 4079 — Only Available with 3rd digit T                                                            |
| 8 | Aegis PF 128 (NACE) — Only Available with 3rd digit T                                                     |
| A | Kalrez 6375 — Only Available with 3rd digit T                                                             |
| В | HF Acid Probe — Only available with 3rd digit T and 8th digit C                                           |
| D | None/Glass Ceramic Alloy (dual-seal design with annunciator fitting)—Only available with 3rd digit D or P |
| N | None/Glass Ceramic Alloy — Available only with 3rd digit D, P or S                                        |



# MODEL NUMBER

# CAGED PROBE

#### **1** | TECHNOLOGY

ECLIPSE GWR Probes - Model 706

#### **2** | MEASUREMENT SYSTEM

| A | English |
|---|---------|
| С | Metric  |

#### **3** | CONFIGURATION/STYLE (RIGID)

| G | Overfill Caged Rigid Probe for use in chambers +200 °C (+400 °F)                                   |
|---|----------------------------------------------------------------------------------------------------|
| J | Overfill Caged High Temp/High Pressure Probe with Glass Seal for use in chambers +450 °C (+850 °F) |
| L | Overfill Caged High Pressure Probe with Glass Seal for use in chambers +200 °C (+400 °F)           |

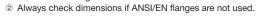
#### **4 5** | PROCESS CONNECTION – SIZE/TYPE (consult factory for other process connections) ① ANSI Flanges

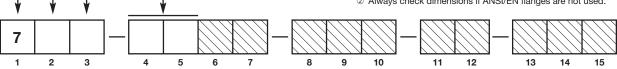
| 4 3 | 2" | 150# ANSI RF       |
|-----|----|--------------------|
| 4 4 | 2" | 300# ANSI RF       |
| 4 5 | 2" | 600# ANSI RF       |
| 4 7 | 2" | 900/1500# ANSI RF  |
| 4 8 | 2" | 2500# ANSI RF      |
| 4 K | 2" | 600# ANSI RTJ      |
| 4 M | 2" | 900/1500# ANSI RTJ |
| 4 N | 2" | 2500# ANSI RTJ     |
| 5 3 | 3" | 150# ANSI RF       |

| 5 4 | 3" | 300# ANSI RF   |
|-----|----|----------------|
| 5 5 | 3" | 600# ANSI RF   |
| 56  | 3" | 900# ANSI RF   |
| 57  | 3" | 1500# ANSI RF  |
| 58  | 3" | 2500# ANSI RF  |
| 5 K | 3" | 600# ANSI RTJ  |
| 5 L | 3" | 900# ANSI RTJ  |
| 5 M | 3" | 1500# ANSI RTJ |
| 5 N | 3" | 2500# ANSI RTJ |
|     |    |                |

| 6 3 | 4" | 150# ANSI RF   |
|-----|----|----------------|
| 6 4 | 4" | 300# ANSI RF   |
| 65  | 4" | 600# ANSI RF   |
| 66  | 4" | 900# ANSI RF   |
| 67  | 4" | 1500# ANSI RF  |
| 68  | 4" | 2500# ANSI RF  |
| 6 K | 4" | 600# ANSI RTJ  |
| 6 L | 4" | 900# ANSI RTJ  |
| 6 M | 4" | 1500# ANSI RTJ |
| 6 N | 4" | 2500# ANSI RTJ |

#### EN Flanges


| D A | DN 50, PN 16    | EN 1092-1 TYPE A  |
|-----|-----------------|-------------------|
| DΒ  | DN 50, PN 25/40 | EN 1092-1 TYPE A  |
| D D | DN 50, PN 63    | EN 1092-1 TYPE B2 |
| DE  | DN 50, PN 100   | EN 1092-1 TYPE B2 |
| DF  | DN 50, PN 160   | EN 1092-1 TYPE B2 |
| D G | DN 50, PN 250   | EN 1092-1 TYPE B2 |
| DΗ  | DN 50, PN 320   | EN 1092-1 TYPE B2 |
| DJ  | DN 50, PN 400   | EN 1092-1 TYPE B2 |
| ΕA  | DN 80, PN 16    | EN 1092-1 TYPE A  |
| ЕВ  | DN 80, PN 25/40 | EN 1092-1 TYPE A  |
| ΕD  | DN 80, PN 63    | EN 1092-1 TYPE B2 |
| ЕЕ  | DN 80, PN 100   | EN 1092-1 TYPE B2 |
|     |                 |                   |


| ΕF  | DN 80, PN 160    | EN 1092-1 TYPE B2 |
|-----|------------------|-------------------|
| E G | DN 80, PN 250    | EN 1092-1 TYPE B2 |
| ЕН  | DN 80, PN 320    | EN 1092-1 TYPE B2 |
| ЕЈ  | DN 80, PN 400    | EN 1092-1 TYPE B2 |
| F A | DN 100, PN 16    | EN 1092-1 TYPE A  |
| FΒ  | DN 100, PN 25/40 | EN 1092-1 TYPE A  |
| F D | DN 100, PN 63    | EN 1092-1 TYPE B2 |
| FE  | DN 100, PN 100   | EN 1092-1 TYPE B2 |
| FF  | DN 100, PN 160   | EN 1092-1 TYPE B2 |
| F G | DN 100, PN 250   | EN 1092-1 TYPE B2 |
| FΗ  | DN 100, PN 320   | EN 1092-1 TYPE B2 |
| F J | DN 100, PN 400   | EN 1092-1 TYPE B2 |
|     |                  |                   |

# Torque Tube Mating Flanges 2

| ТТ | 600# Fisher (249B/259B) in carbon steel – as per dimensions on page 18   |  |
|----|--------------------------------------------------------------------------|--|
| ΤU | 600# Fisher (249C) in stainless steel – as per dimensions on page 18     |  |
| UT | 600# Masoneilan flange in carbon steel – as per dimensions on page 18    |  |
| UU | 600# Masoneilan flange in stainless steel – as per dimensions on page 18 |  |

① Confirm mounting conditions/nozzle diameter to ensure sufficient clearance.





#### CAGED PROBE

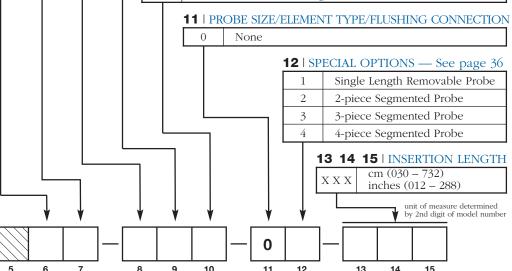
#### | CONSTRUCTION CODES

| 0 | Industrial                                                               |
|---|--------------------------------------------------------------------------|
| K | ASME B31.1                                                               |
| L | ASME B31.3                                                               |
| M | ASME B31.3 & NACE MR0175/MR0103 — NOT available with carbon steel flange |
| N | NACE MR0175/MR0103 — NOT available with carbon steel flange              |

#### | FLANGE OPTIONS

| 0 | None                                                                                                            |
|---|-----------------------------------------------------------------------------------------------------------------|
| 1 | Offset (For use with AURORA) – 4"/DN 100 Only available with 3rd digit G and J and 4th digit 6                  |
| 2 | Offset with ½" NPT Vent (For use with AURORA) – 4"/DN 100 Only available with 3rd digit G and J and 4th digit 6 |
| 3 | Offset with ¾" NPT Vent (For use with AURORA) – 4"/DN 100 Only available with 3rd digit G and J and 4th digit 6 |

# $\textbf{8} \mid \texttt{MATERIAL} \ \, \texttt{OF} \ \, \texttt{CONSTRUCTION} \, - \, \texttt{MFG/NUT/ROD/INSULATION}$


| A | 316 SS/316L SS                          |
|---|-----------------------------------------|
| В | Hastelloy C                             |
| С | Monel                                   |
| R | 316 SS/316L SS with Carbon Steel Flange |
| S | Hastelloy C with Carbon Steel Flange    |
| Т | Monel with Carbon Steel Flange          |

#### | SPACER MATERIAL

| 2 | PEEK HT (+345 °C/+650 °F)                                              |
|---|------------------------------------------------------------------------|
| 3 | Ceramic (High Temp.>+800 °F/+425 °C) — Only available with 3rd digit J |
| 4 | Celazole® (+800 °F/+425 °C) — Only available with 3rd digit J          |

#### | O-RING MATERIALS/SEAL OPTIONS

| 0 | Viton® GFLT — Not available with 3rd digit J or L                                                     |  |  |  |
|---|-------------------------------------------------------------------------------------------------------|--|--|--|
| 2 | Kalrez 4079 — Not available with 3rd digit J or L                                                     |  |  |  |
| 8 | 8 Aegis PF 128 (NACE) — Not available with 3rd digit J or L                                           |  |  |  |
| A | Kalrez 6375 — Not available with 3rd digit J or L                                                     |  |  |  |
| В | 3 HF Acid Probe — Only Available with 3rd digit G and 8th digit G                                     |  |  |  |
| D | None/Glass Ceramic Alloy (Dual Seal Design with annunciator fitting) — Not available with 3rd digit G |  |  |  |
| N | None/Glass Ceramic Alloy —<br>Not available with 3rd digit G                                          |  |  |  |



# SINGLE ROD RIGID PROBE

#### **1** | TECHNOLOGY

ECLIPSE GWR Probes - Model 706

#### **2** | MEASUREMENT SYSTEM

| A | English |
|---|---------|
| С | Metric  |

#### **3** | CONFIGURATION/STYLE (RIGID)

| F | Single Rod, Standard (+400 °F/200 °C) for in-tank applications — NOT available with 10th digit N or D                                   |
|---|-----------------------------------------------------------------------------------------------------------------------------------------|
| M | Single Rod, High Pressure Probe with glass seal (+200 °C/+400 °F), for in-tank applications. Only available with 10 th Digit N or D     |
| N | Single Rod, High Temp/High Pressure with glass seal (+450 °C/+850 °F), for in-tank applications. Only available with 10 th Digit N or D |

# **4 5** | PROCESS CONNECTION – SIZE/TYPE (consult factory for other process connections) ①

#### Threaded

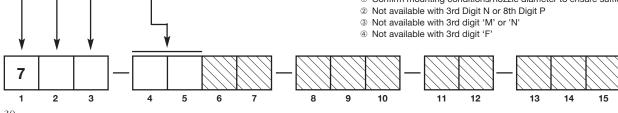
| 2 1 | 1" NPT Thread ② | 2 2 |
|-----|-----------------|-----|
| 4 1 | 2" NPT Thread   | 4 2 |

| 2 2 | 1" BSP (G 1") Thread 2 |
|-----|------------------------|
| 4 2 | 2" BSP (G-2") Thread   |

#### ANSI Flanges

| AINSI II | anges                    |
|----------|--------------------------|
| 3 3      | 1 ½" 150# ANSI RF ①③     |
| 3 4      | 1 ½" 300# ANSI RF ①③     |
| 3 5      | 1 ½" 600# ANSI RF ①③     |
| 3 7      | 1 ½" 900/1500# ANSI RF ④ |
| 3 K      | 1 ½ 600# ANSI RTJ ④      |
| 3 M      | 1 ½ 900/1500# ANSI RTJ ④ |
| 4 3      | 2" 150# ANSI RF ①        |
| 4 4      | 2" 300# ANSI RF ①        |
| 4 5      | 2" 600# ANSI RF ①        |
| 4 7      | 2" 900/1500# ANSI RF @   |
| 4 8      | 2" 2500# ANSI RF 4       |
| 4 K      | 2" 600# ANSI RTJ 4       |
| 4 M      | 2" 900/1500# ANSI RTJ 4  |
|          |                          |

| 4 N | 2" | 2500# ANSI RTJ ④ |
|-----|----|------------------|
| 5 3 | 3" | 150# ANSI RF     |
| 5 4 | 3" | 300# ANSI RF     |
| 5 5 | 3" | 600# ANSI RF     |
| 5 6 | 3" | 900# ANSI RF ④   |
| 5 7 | 3" | 1500# ANSI RF ④  |
| 5 8 | 3" | 2500# ANSI RF ④  |
| 5 K | 3" | 600# ANSI RTJ ④  |
| 5 L | 3" | 900# ANSI RTJ ④  |
| 5 M | 3" | 1500# ANSI RTJ ④ |


| 5 N | 3" | 2500# ANSI RTJ ④ |
|-----|----|------------------|
| 63  | 4" | 150# ANSI RF     |
| 6 4 | 4" | 300# ANSI RF     |
| 6.5 | 4" | 600# ANSI RF     |
| 6 6 | 4" | 900# ANSI RF ④   |
| 6 7 | 4" | 1500# ANSI RF ④  |
| 68  | 4" | 2500# ANSI RF ④  |
| 6 K | 4" | 600# ANSI RTJ 4  |
| 6 L | 4" | 900# ANSI RTJ ④  |
| 6 M | 4" | 1500# ANSI RTJ ④ |
| 6 N | 4" | 2500# ANSI RTJ ④ |

# EN Flanges

| СВ  | DN 40, PN 16/25/40 | EN 1092-1 TYPE A ①③   |
|-----|--------------------|-----------------------|
| СС  | DN 40, PN 63/100   | EN 1092-1 TYPE B2 ①③  |
| C F | DN 40, PN 160      | EN 1092-1 TYPE B2 ①3④ |
| C G | DN 40, PN 250      | EN 1092-1 TYPE B2 ①3④ |
| D A | DN 50, PN 16       | EN 1092-1 TYPE A ①    |
| DΒ  | DN 50, PN 25/40    | EN 1092-1 TYPE A ①    |
| D D | DN 50, PN 63       | EN 1092-1 TYPE B2 ①   |
| DE  | DN 50, PN 100      | EN 1092-1 TYPE B2 ①   |
| DF  | DN 50, PN 160      | EN 1092-1 TYPE B2 4   |
| D G | DN 50, PN 250      | EN 1092-1 TYPE B2 ④   |
| DΗ  | DN 50, PN 320      | EN 1092-1 TYPE B2 4   |
| DЈ  | DN 50, PN 400      | EN 1092-1 TYPE B2 ④   |
| ΕA  | DN 80, PN 16       | EN 1092-1 TYPE A ①    |
| ЕВ  | DN 80, PN 25/40    | EN 1092-1 TYPE A      |

| ΕD  | DN 80, PN 63     | EN 1092-1 TYPE B2   |
|-----|------------------|---------------------|
| ЕЕ  | DN 80, PN 100    | EN 1092-1 TYPE B2   |
| ΕF  | DN 80, PN 160    | EN 1092-1 TYPE B2 ④ |
| E G | DN 80, PN 250    | EN 1092-1 TYPE B2 @ |
| ЕН  | DN 80, PN 320    | EN 1092-1 TYPE B2 ④ |
| ЕЈ  | DN 80, PN 400    | EN 1092-1 TYPE B2 ④ |
| F A | DN 100, PN 16    | EN 1092-1 TYPE A    |
| FΒ  | DN 100, PN 25/40 | EN 1092-1 TYPE A    |
| F D | DN 100, PN 63    | EN 1092-1 TYPE B2   |
| FΕ  | DN 100, PN 100   | EN 1092-1 TYPE B2   |
| FF  | DN 100, PN 160   | EN 1092-1 TYPE B2 ④ |
| F G | DN 100, PN 250   | EN 1092-1 TYPE B2 ④ |
| FΗ  | DN 100, PN 320   | EN 1092-1 TYPE B2 ④ |
| F J | DN 100, PN 400   | EN 1092-1 TYPE B2 ④ |
|     |                  |                     |

- ① Confirm mounting conditions/nozzle diameter to ensure sufficient clearance.



#### SINGLE ROD RIGID PROBE

#### **6** | CONSTRUCTION CODES

| 0 | Industrial                                                               |
|---|--------------------------------------------------------------------------|
| K | ASME B31.1                                                               |
| L | ASME B31.3                                                               |
| M | ASME B31.3 & NACE MR0175/MR0103 — NOT available with carbon steel flange |
| N | NACE MR0175/MR0103 — NOT available with carbon steel flange              |

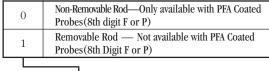
# 7 | FLANGE OPTIONS 0 None

| <b>8</b>   MATERIAL OF | CONSTRUCTION - | - MFG/NUT/ROD | /INSULATION |
|------------------------|----------------|---------------|-------------|

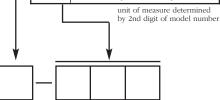
| A | 316 SS/316L SS                                                                   |
|---|----------------------------------------------------------------------------------|
| В | Hastelloy C                                                                      |
| С | Monel                                                                            |
| F | Faced Flange, PFA coated wetted surfaces — Only available with Digit 3rd digit F |
| P | PFA coated rod — Only available with Digit 3rd digit F                           |
| R | 316 SS/316L SS with Carbon Steel Flange                                          |
| S | Hastelloy C with Carbon Steel Flange                                             |
| Т | Monel with Carbon Steel Flange                                                   |

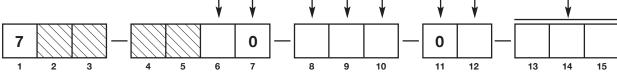
#### **9** | SPACER MATERIAL

| 0 | None – Not available with 3rd Digit N                                  |
|---|------------------------------------------------------------------------|
| 2 | PEEK HT (+345 °C/+650 °F) — Only available with 3rd digit N            |
| 3 | Ceramic (High Temp.>+425 °C/+800 °F) — Only available with 3rd digit N |
| 4 | Celazole® (+425 °C/+800 °F) — Only available with 3rd digit N          |


# **10** | O-RING MATERIALS/SEAL OPTIONS

| 0 | Viton® GFLT — Not available with 3rd digit M or N                                            |  |
|---|----------------------------------------------------------------------------------------------|--|
| 2 | Kalrez 4079 — Not available with 3rd digit M or N                                            |  |
| 8 | Aegis PF 128 (NACE) — Not available with 3rd digit M or N                                    |  |
| A | Kalrez 6375 — Not available with 3rd digit M or N                                            |  |
| D | None/Glass Ceramic Alloy Dual Seal with annunciator fitting — Not available with 3rd digit F |  |
| N | None/Glass Ceramic Alloy Dual Seal—Not available with 3rd digit F                            |  |


#### 11 | PROBE SIZE/ELEMENT TYPE/FLUSHING CONNECTION


0 Standard Single Rod

## **12** | SPECIAL OPTIONS



#### 





# SINGLE FLEXIBLE PROBE

#### **1** | TECHNOLOGY

7 ECLIPSE GWR Probes - Model 706

#### **2** | MEASUREMENT SYSTEM

| A | English |
|---|---------|
| С | Metric  |

#### **3** | SPECIALTY FLEXIBLE PROBES

| 1 | Single Cable Flexible standard for in-tank applications (+200 °C/+400 °F) |  |
|---|---------------------------------------------------------------------------|--|
| 2 | Single Cable Flexible Light Duty Bulk Solids                              |  |
| 3 | Single Cable Flexible HP for in-tank applications (+200 °C/+400 °F)       |  |
| 6 | Single Cable Flexible HTHP for chamber applications (+450 °C/+850 °F)     |  |

# **4 5** | PROCESS CONNECTION – SIZE/TYPE (consult factory for other process connections)

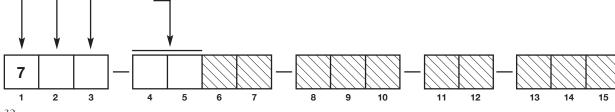
# Threaded

| 4 1 2" NPT Thread |  | 4 2 | 2" BSP (G 2") Thread |
|-------------------|--|-----|----------------------|
|-------------------|--|-----|----------------------|

# ANSI Flanges

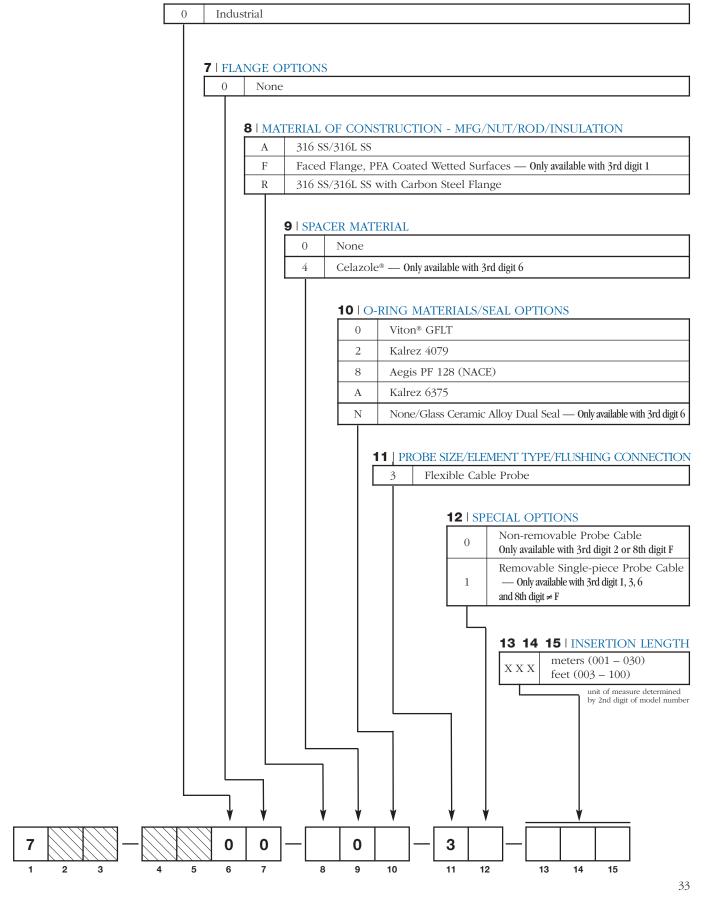
| 4 3 | 2" | 150# ANSI RF ①    |
|-----|----|-------------------|
| 4 4 | 2" | 300# ANSI RF ①    |
| 4 5 | 2" | 600# ANSI RF ①    |
| 4 7 | 2" | 900/1500# ANSI RF |
| 48  | 2" | 2500# ANSI RF     |
| 4 K | 2" | 600# ANSI RTJ     |
| 4 M | 2" | 900/1500# ANSI RT |
| 4 N | 2" | 2500# ANSI RTJ    |

| 5 3 | 3" | 150# ANSI RF   |
|-----|----|----------------|
| 5 4 | 3" | 300# ANSI RF   |
| 5.5 | 3" | 600# ANSI RF   |
| 5 6 | 3" | 900# ANSI RF   |
| 5 7 | 3" | 1500# ANSI RF  |
| 58  | 3" | 2500# ANSI RF  |
| 5 K | 3" | 600# ANSI RTJ  |
| 5 L | 3" | 900# ANSI RTJ  |
| 5 M | 3" | 1500# ANSI RTJ |
| 5 N | 3" | 2500# ANSI RTJ |


| 63  | 4" 150# ANSI RF     |
|-----|---------------------|
| 6 4 | 4" 300# ANSI RF     |
| 6.5 | 4" 600# ANSI RF     |
| 6 6 | 4" 900# ANSI RF @   |
| 6 7 | 4" 1500# ANSI RF @  |
| 68  | 4" 2500# ANSI RF @  |
| 6 K | 4" 600# ANSI RTJ @  |
| 6 L | 4" 900# ANSI RTJ @  |
| 6 M | 4" 1500# ANSI RTJ @ |
| 6 N | 4" 2500# ANSI RTJ @ |

#### EN Flanges

| DA  | DN 50, PN 16    | EN 1092-1 TYPE A ①  |
|-----|-----------------|---------------------|
| DΒ  | DN 50, PN 25/40 | EN 1092-1 TYPE A ①  |
| D D | DN 50, PN 63    | EN 1092-1 TYPE B2 ① |
| DE  | DN 50, PN 100   | EN 1092-1 TYPE B2 ① |
| DF  | DN 50, PN 160   | EN 1092-1 TYPE B2 ② |
| DG  | DN 50, PN 250   | EN 1092-1 TYPE B2 ② |
| DΗ  | DN 50, PN 320   | EN 1092-1 TYPE B2 ② |
| DJ  | DN 50, PN 400   | EN 1092-1 TYPE B2 ② |
| ΕA  | DN 80, PN 16    | EN 1092-1 TYPE A ①  |
| ЕВ  | DN 80, PN 25/40 | EN 1092-1 TYPE A    |
| ΕD  | DN 80, PN 63    | EN 1092-1 TYPE B2   |
| ЕЕ  | DN 80, PN 100   | EN 1092-1 TYPE B2   |
|     |                 |                     |


| E G DN 80, PN 250 EN 1092-1 TYPE B2 ② E H DN 80, PN 320 EN 1092-1 TYPE B2 ② E J DN 80, PN 400 EN 1092-1 TYPE B2 ② F A DN 100, PN 16 EN 1092-1 TYPE A F B DN 100, PN 25/40 EN 1092-1 TYPE A F D DN 100, PN 63 EN 1092-1 TYPE B2 F E DN 100, PN 100 EN 1092-1 TYPE B2 F F DN 100, PN 160 EN 1092-1 TYPE B2 ② F G DN 100, PN 250 EN 1092-1 TYPE B2 ② F H DN 100, PN 320 EN 1092-1 TYPE B2 ② |     |                  |                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|---------------------|
| E H DN 80, PN 320 EN 1092-1 TYPE B2 © E J DN 80, PN 400 EN 1092-1 TYPE B2 © F A DN 100, PN 16 EN 1092-1 TYPE A F B DN 100, PN 25/40 EN 1092-1 TYPE A F D DN 100, PN 63 EN 1092-1 TYPE B2 F E DN 100, PN 100 EN 1092-1 TYPE B2 F F DN 100, PN 160 EN 1092-1 TYPE B2 © F G DN 100, PN 250 EN 1092-1 TYPE B2 © F H DN 100, PN 320 EN 1092-1 TYPE B2 ©                                       | ΕF  | DN 80, PN 160    | EN 1092-1 TYPE B2 ② |
| E J DN 80, PN 400 EN 1092-1 TYPE B2 © F A DN 100, PN 16 EN 1092-1 TYPE A  F B DN 100, PN 25/40 EN 1092-1 TYPE A  F D DN 100, PN 63 EN 1092-1 TYPE B2  F E DN 100, PN 100 EN 1092-1 TYPE B2  F F DN 100, PN 160 EN 1092-1 TYPE B2 ©  F G DN 100, PN 250 EN 1092-1 TYPE B2 ©  F H DN 100, PN 320 EN 1092-1 TYPE B2 ©                                                                       | E G | DN 80, PN 250    | EN 1092-1 TYPE B2 ② |
| F A DN 100, PN 16 EN 1092-1 TYPE A F B DN 100, PN 25/40 EN 1092-1 TYPE A F D DN 100, PN 63 EN 1092-1 TYPE B2 F E DN 100, PN 100 EN 1092-1 TYPE B2 F F DN 100, PN 160 EN 1092-1 TYPE B2 ② F G DN 100, PN 250 EN 1092-1 TYPE B2 ② F H DN 100, PN 320 EN 1092-1 TYPE B2 ②                                                                                                                   | ЕН  | DN 80, PN 320    | EN 1092-1 TYPE B2 ② |
| F B DN 100, PN 25/40 EN 1092-1 TYPE A F D DN 100, PN 63 EN 1092-1 TYPE B2 F E DN 100, PN 100 EN 1092-1 TYPE B2 F F DN 100, PN 160 EN 1092-1 TYPE B2 © F G DN 100, PN 250 EN 1092-1 TYPE B2 © F H DN 100, PN 320 EN 1092-1 TYPE B2 ©                                                                                                                                                      | ЕЈ  | DN 80, PN 400    | EN 1092-1 TYPE B2 ② |
| F D DN 100, PN 63 EN 1092-1 TYPE B2 F E DN 100, PN 100 EN 1092-1 TYPE B2 F F DN 100, PN 160 EN 1092-1 TYPE B2 © F G DN 100, PN 250 EN 1092-1 TYPE B2 © F H DN 100, PN 320 EN 1092-1 TYPE B2 ©                                                                                                                                                                                            | F A | DN 100, PN 16    | EN 1092-1 TYPE A    |
| F E DN 100, PN 100 EN 1092-1 TYPE B2 F F DN 100, PN 160 EN 1092-1 TYPE B2 © F G DN 100, PN 250 EN 1092-1 TYPE B2 © F H DN 100, PN 320 EN 1092-1 TYPE B2 ©                                                                                                                                                                                                                                | FΒ  | DN 100, PN 25/40 | EN 1092-1 TYPE A    |
| F F DN 100, PN 160 EN 1092-1 TYPE B2 ② F G DN 100, PN 250 EN 1092-1 TYPE B2 ② F H DN 100, PN 320 EN 1092-1 TYPE B2 ②                                                                                                                                                                                                                                                                     | F D | DN 100, PN 63    | EN 1092-1 TYPE B2   |
| F G DN 100, PN 250 EN 1092-1 TYPE B2 © F H DN 100, PN 320 EN 1092-1 TYPE B2 ©                                                                                                                                                                                                                                                                                                            | FΕ  | DN 100, PN 100   | EN 1092-1 TYPE B2   |
| F H DN 100, PN 320 EN 1092-1 TYPE B2 ②                                                                                                                                                                                                                                                                                                                                                   | FF  | DN 100, PN 160   | EN 1092-1 TYPE B2 ② |
| ,                                                                                                                                                                                                                                                                                                                                                                                        | F G | DN 100, PN 250   | EN 1092-1 TYPE B2 ② |
| F J DN 100, PN 400 EN 1092-1 TYPE B2 @                                                                                                                                                                                                                                                                                                                                                   | FΗ  | DN 100, PN 320   | EN 1092-1 TYPE B2 ② |
|                                                                                                                                                                                                                                                                                                                                                                                          | F J | DN 100, PN 400   | EN 1092-1 TYPE B2 ② |

- $\ \, \textcircled{1}$  Confirm mounting conditions/nozzle diameter to ensure sufficient clearance.
- ② Only available with 3rd Digit 3 or 6



#### SINGLE FLEXIBLE PROBE

#### **6** | CONSTRUCTION CODES



# TWIN FLEXIBLE PROBE

#### **1** | TECHNOLOGY

7 ECLIPSE GWR Probes - Model 706

#### **2** | MEASUREMENT SYSTEM

| A | English |
|---|---------|
| С | Metric  |

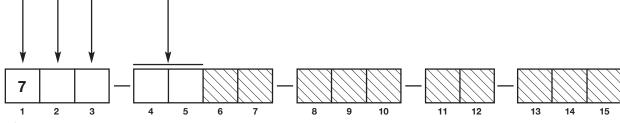
#### **3** | SPECIALTY FLEXIBLE PROBES

| 5 | Twin Flexible Light Duty Bulk Solids with FEP Webbing |
|---|-------------------------------------------------------|
| 7 | Twin Flexible - 316 SS with FEP Webbing               |

# **4 5** | PROCESS CONNECTION – SIZE/TYPE (consult factory for other process connections)

# Threaded ①

| 4 1 | 2" NPT Thread | 4 2 | 2" BSP (G 2") Thread |
|-----|---------------|-----|----------------------|


# ANSI Flanges

| 5 3 | 3" | 150 lbs. ANSI RF |
|-----|----|------------------|
| 5 4 | 3" | 300 lbs. ANSI RF |
| 5 5 | 3" | 600 lbs. ANSI RF |
| 6 3 | 4" | 150 lbs. ANSI RF |
| 6 4 | 4" | 300 lbs. ANSI RF |
| 6.5 | 4" | 600 lbs. ANSI RF |

#### EN Flanges

| ΕA  | DN 80, PN 16     | EN 1092-1 TYPE A  |
|-----|------------------|-------------------|
| ЕВ  | DN 80, PN 25/40  | EN 1092-1 TYPE A  |
| E D | DN 80, PN 63     | EN 1092-1 TYPE B2 |
| ΕE  | DN 80, PN 100    | EN 1092-1 TYPE B2 |
| F A | DN 100, PN 16    | EN 1092-1 TYPE A  |
| FΒ  | DN 100, PN 25/40 | EN 1092-1 TYPE A  |
| F D | DN 100, PN 63    | EN 1092-1 TYPE B2 |
| FΕ  | DN 100, PN 100   | EN 1092-1 TYPE B2 |

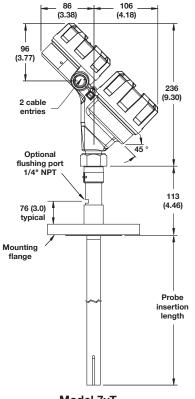
 $<sup>\, \</sup>oplus \,$  Confirm mounting conditions/nozzle diameter to ensure sufficient clearance.

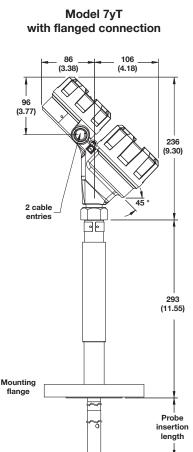


**6** | CONSTRUCTION CODES

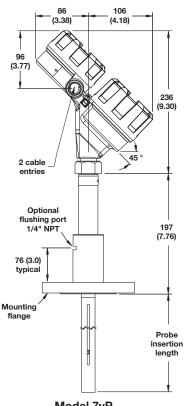
#### TWIN FLEXIBLE PROBE

# Industrial **7** | FLANGE OPTIONS None **8** | MATERIAL OF CONSTRUCTION - MFG/NUT/ROD/INSULATION 316 SS/316L SS 316 SS/316L SS with Carbon Steel Flange R 9 | SPACER MATERIAL None **10** | O-RING MATERIALS/SEAL OPTIONS Viton® GFLT Kalrez 4079 - Only available with 3rd digit 7 2 Aegis PF 128 (NACE) - Only available with 3rd digit 7 Kalrez 6375 - Only available with 3rd digit 7 Α 11 | PROBE SIZE/ELEMENT TYPE/FLUSHING CONNECTION Flexible Cable Probe **12** | SPECIAL OPTIONS None 13 14 15 | INSERTION LENGTH meters (001 – 030) feet (003 – 100) X X Xunit of measure determined by 2nd digit of model number 0 0 0

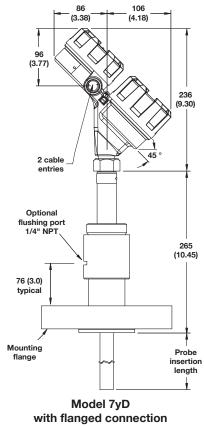

# SEGMENTED PROBE OPTIONS

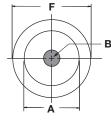

# 12th DIGIT OF MODEL NUMBER

| Probe Model                                                                                         | One                        | Two                        | Three                      | Four                        | Five          | Six           |
|-----------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|---------------|---------------|
|                                                                                                     | Segment                    | Segments                   | Segments                   | Segments                    | Segments      | Segments      |
| Coaxial Models 7yD, 7yP and 7yT (Enlarged versions only) (3", DN 80 Process Connections and larger) | 60 – 182 cm                | 120 – 365 cm               | 180 – 548 cm               | 240 – 731 cm                | 305 – 914 cm  | 365 – 999 cm  |
|                                                                                                     | (24 – 72")                 | (48 – 144")                | (72 – 216")                | (96 – 288")                 | (120 – 360")  | (144 – 396")  |
| Caged Models<br>7yG, 7yL and 7yJ                                                                    | 30 – 305 cm<br>(12 – 120") | 60 – 610 cm<br>(24 – 240") | 90 – 732 cm<br>(36 – 288") | 120 – 732 cm<br>(48 – 288") | Not Available | Not Available |


NOTE: Segments will be evenly divided over the length of the probe.

# mm (INCHES)

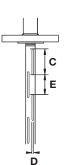


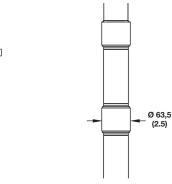

Model 7yS with flanged connection



Model 7yP with flanged connection







Model 7yS Coaxial GWR Probe, **End View** 



Coaxial GWR Probe, **End View** 

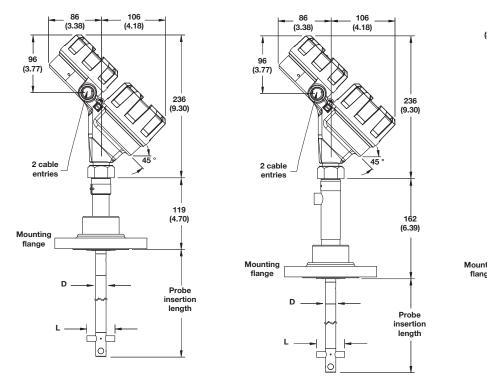


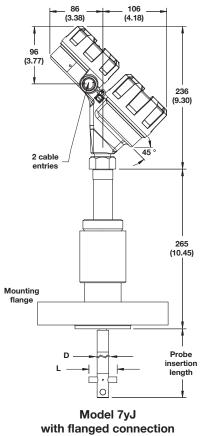
**Coaxial Probe Slots** 



**Segmented Enlarged Coaxial Probe** 

#### mm (inches)


| Dim. | Small Diameter | Enlarged (standard)                         |  |
|------|----------------|---------------------------------------------|--|
| Α    | 22,5 (0.88)    | 45 (1.75) - SST<br>49 (1.92) - HC and Monel |  |
| В    | 8 (0.31)       | 16 (0.63)                                   |  |
| С    | 100 (4.08)     | 153 (6.05)                                  |  |
| D    | 4 (0.15)       | 8 (0.30)                                    |  |
| Е    | 96 (3.78)      | 138 (5.45)                                  |  |
| F    | 31,75 (1.25)   | _                                           |  |


# CAGED PROBE DIMENSIONS

# mm (INCHES)

Model 7yG

with flanged connection

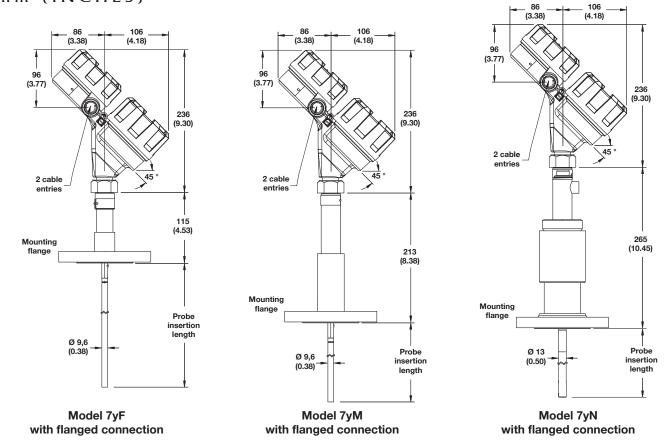




 Cage Size
 Probe Rod Diameter (D)
 Spacer Length (L)

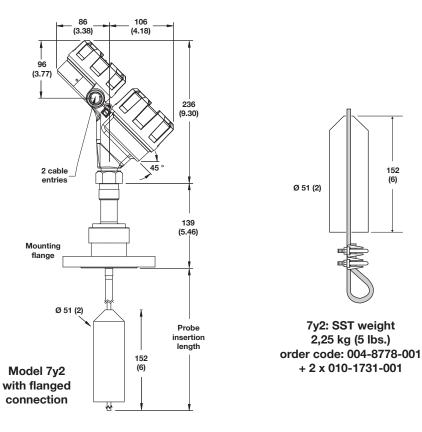
 2"
 13 to 19 mm (0.5 to 0.75")
 46 mm (1.82")

 3"
 19 to 29 mm (0.75 to 1.13")
 67 mm (2.64")


 4"
 27 to 38 mm (1.05 to 1.50")
 91 mm (3.60")

Model 7yL

with flanged connection


# SINGLE ROD RIGID PROBE DIMENSIONS

# mm (INCHES)



# SINGLE FLEXIBLE PROBE DIMENSIONS

#### mm (INCHES) 106 (4.18) 106 (4.18) \_ 86 (3.38) 96 (3.77) 96 (3.77) 236 (9.30) 236 (9.30) 2 cable entries 2 cable entries entries 115 (4.53) Mounting flange 265 (10.45) 265 (10.45) Mounting flange Mounting Probe insertion length Ø 51 (2) Ø 51 (2) Ø 51 (2) 99 (3.88) Ø 13,2 (0.52) Probe insertion length Probe insertion length 19 (0.75) Model 7y3 152 Model 7y6 152 (6) with flanged with flanged Model 7y1 connection connection with flanged connection

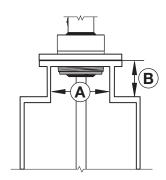


152

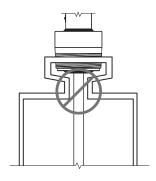
# "IN TANK" STANDARD SINGLE ROD PROBE

#### MOUNTING CONSIDERATIONS

# For Rigid Models 7yF, M, N and Flexible Models 7y1, 2 and 6


#### 1. Turbulence

The bottom of rigid probes should be stabilized if turbulence will cause a deflection of more than 75 mm (3") at the end of a 3 m (10') length. The probe should not make contact with metal.


#### 2. Nozzle

Single rod performance in nozzles can be improved by ensuring the following:

- Nozzle must be 50 mm (2") or larger diameter.
- Nozzle should be as short as possible.
- Nozzle inside diameter (A) should be ≥ to nozzle height (B).
  - If this is not the case, adjustments to BLOCKING DISTANCE and/or SENSITIVITY parameters may be required.



Correct Installation



Pipe reducers should not be used

#### 3. Metallic (conductive) obstructions in tank.

Although it depends on the transmitter configuration, objects in the proximity of the probe can cause erroneous readings. Please refer to the table below for guidelines, but please contact the factory with any questions as the distances shown can be reduced with the use of PACT*ware*<sup>TM</sup>.

| Distance to probe | Acceptable objects                                                                                        |
|-------------------|-----------------------------------------------------------------------------------------------------------|
| < 150 mm (6")     | Continuous, smooth, parallel, conductive surface (e.g. metal tank wall); probe should not touch tank wall |
| > 150 mm (6")     | < 1"/DN25 diameter pipe and<br>beams, ladder rungs                                                        |
| > 300 mm (12")    | < 3"/DN80 diameter pipe and beams, concrete walls                                                         |
| > 450 mm (18")    | All remaining objects                                                                                     |

Note: A metal stillwell/cage of max. 6"/DN150 size or a metal tank wall parallel to the probe within 150 mm (6") will allow the unit to operate accurately in media with dielectrics down to  $\mathbf{\epsilon}_{\rm T}$  1.4.

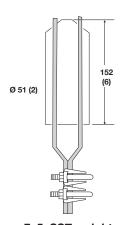
#### 4. Non-metallic vessels

A metal flange is highly recommended for optimum performance in plastic vessels.

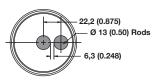
NOTE: Singe rod probes must be used in metallic vessels or stillwell to maintain CE noise immunity.

# Shutdown /Overfill protection

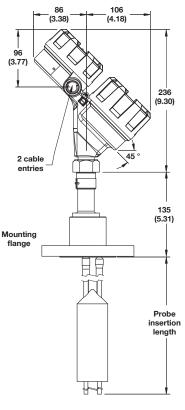
Special consideration is necessary in any shutdown/ overfill protection application where single rod GWR probes are used. To ensure proper measurement, use Overfill Capable single rod probes, such as the Model 7yG, L, or J Caged probes in the appropriate cage/ chamber/stillwell.


# Mounting Considerations for Single Flexible probes measuring Bulk Solids

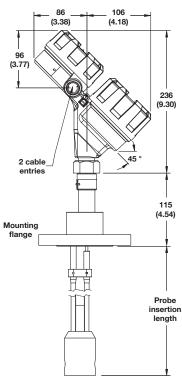
The Model 7y2 Bulk Solid probe is designed for a 1360 kg (3000 lb.) pull-down force for use in applications such as sand, plastic pellets, and grains.


- To reduce excessive stresses on the top of the vessel, do not secure the metal probe weight to the bottom of the vessel.
- Mount the probe at least 300 mm (12") from the wall. The ideal location is ¼ to ½ the diameter to average the angle of repose.

## TWIN FLEXIBLE PROBE DIMENSIONS


#### mm (INCHES)




7y5: SST weight 2,25 kg (5 lbs.) order code: 004-8778-002 + 2 x 010-1731-001



Twin Flexible GWR Probe end view



Model 7y5 with flanged connection



Model 7y7 with flanged connection

# "IN TANK" TWIN FLEXIBLE PROBE

#### MOUNTING CONSIDERATIONS

#### For Models 7y7

#### 1. Turbulence

The bottom of Twin Flexible probes can be secured to the bottom of the vessel by using the TFE weight at the bottom of the probe. The TFE weight has a 13 mm (½") hole that can be utilize to "u-bolt" the probe to the bottom of the vessel.

The probe should not make contact with metal.

#### 2. Nozzle

Twin Flexible probe performance in nozzles can be improved by ensuring the following:

- Nozzle should be 3" (DN80) diameter or larger.
- Nozzle should be as short as possible.

#### 3. Metallic (conductive) obstructions in tank.

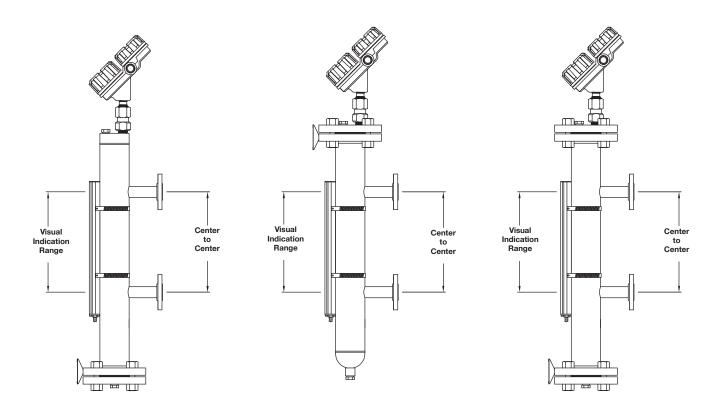
Mount the Twin Flexible probe more than 25 mm (1") from any metallic object/vessel wall.

Mounting Considerations for Twin Flexible Model 7y5 probes measuring Bulk Solids:

The Model 7y5 Bulk Solid probe is designed for a 1360 kg (3000 lb.) pull-down force for use in applications such as sand, plastic pellets, and grains.

- To reduce excessive stresses on the top of the vessel, do not secure the metal probe weight to the bottom of the vessel.
- Mount the probe at least 300 mm (12") from the wall. The ideal location is ¼ to ½ the diameter to average the angle of repose.

#### AURORA® CHAMBER




The Orion Instruments® Aurora® is the patented combination of the ECLIPSE Guided Wave Radar transmitter and a Magnetic Level Indicator (MLI). The integration of these two independent technologies provides excellent redundancy. A custom float positioned within the AURORA chamber travels up and down following level changes. The float contains an internal group of magnets that are "coupled" with magnets in the flags of the visual indicator mounted on the outside of the chamber. As the float moves, the flags rotate to expose the color of their opposite side. The position where the flag's color changes corresponds to a point on the measuring scale indicating true level. In addition to this external visual indicator operated by the AURORA internal float, the ECLIPSE Model 706 transmitter reflects electromagnetic radar pulses directly off the liquid surface providing a real-time continuous level output.

Refer to the Magnetrol® Sales Bulletin BE 57-138 for details and additional options on AURORA chambers.

Regardless of whether a standard chamber or AURORA chamber is being used it is important to remember:

- Ensure that the Model 706 probe extends at least 100 mm (4") past the lower process connection of the chamber
- Utilize Overfill-capable probes for optimal GWR performance.





ISO-9001:2008 REGISTERED FIRM

#### **QUALITY ASSURANCE - ISO 9001:2008**

THE QUALITY ASSURANCE SYSTEM IN PLACE AT MAGNETROL GUARANTEES THE HIGHEST LEVEL OF QUALITY DURING THE DESIGN, THE CONSTRUCTION AND THE SERVICE OF CONTROLS.

OUR QUALITY ASSURANCE SYSTEM IS APPROVED AND CERTIFIED TO ISO 9001:2008 AND OUR TOTAL COMPANY IS COMMITTED TO

PROVIDING FULL CUSTOMER SATISFACTION BOTH IN QUALITY PRODUCTS AND QUALITY SERVICE.

#### PRODUCT WARRANTY

ALL MAGNETROL ELECTRONIC AND ULTRASONIC LEVEL CONTROLS ARE WARRANTED FREE OF DEFECTS IN MATERIALS AND WORK-MANSHIP FOR 18 MONTHS FROM THE DATE OF ORIGINAL FACTORY SHIPMENT. IF RETURNED WITHIN THE WARRANTY PERIOD; AND, UPON FACTORY INSPECTION OF THE CONTROL, THE CAUSE OF THE CLAIM IS DETERMINED TO BE COVERED UNDER THE WARRANTY; THEN, MAGNETROL INTERNATIONAL WILL REPAIR OR REPLACE THE CONTROL AT NO COST TO THE PURCHASER (OR OWNER) OTHER THAN TRANSPORTATION.

MAGNETROL SHALL NOT BE LIABLE FOR MISAPPLICATION, LABOR CLAIMS, DIRECT OR CONSEQUENTIAL DAMAGE OR EXPENSE ARISING FROM THE INSTALLATION OR USE OF THE EQUIPMENT. THERE ARE NO OTHER WARRANTIES EXPRESSED OR IMPLIED, EXCEPT, SPECIAL WRITTEN WARRANTIES COVERING SOME MAGNETROL PRODUCTS.



BULLETIN N°: EFFECTIVE: SUPERSEDES:

BE 57-106.5 AUGUST 2016 April 2016

#### UNDER RESERVE OF MODIFICATIONS

| BENELUX<br>FRANCE | Heikensstraat 6, 9240 Zele, België -Belgique<br>Tel. +32 (0)52.45.11.11 • Fax. +32 (0)52.45.09.93 • E-Mail: info@magnetrol.be                                   | MM  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| DEUTSCHLAND       | Alte Ziegelei 2-4, D-51491 Overath Tel. +49 (0)2204 / 9536-0 • Fax. +49 (0)2204 / 9536-53 • E-Mail: vertrieb@magnetrol.de                                       | /W. |
| INDIA             | B-506, Sagar Tech Plaza, Saki Naka Junction, Andheri (E), Mumbai - 400072<br>Tel. +91 22 2850 7903 • Fax. +91 22 2850 7904 • E-Mail: info@magnetrolindia.com    | ma  |
| ITALIA            | Via Arese 12, I-20159 Milano<br>Tel. +39 02 607.22.98 • Fax. +39 02 668.66.52 • E-Mail: mit.gen@magnetrol.it                                                    | gne |
| RUSSIA            | 198095 Saint-Petersburg, Marshala Govorova street, house 35A, office 427 Tel. +7 812 320 70 87 • E-Mail: info@magnetrol.ru                                      | tro |
| U.A.E.            | DAFZA Office 5EA 722 • PO Box 293671 • Dubai<br>Tel. +971-4-6091735 • Fax +971-4-6091736 • E-Mail: info@magnetrol.ae                                            | l.c |
| UNITED<br>KINGDOM | Unit 1 Regent Business Centre, Jubilee Road Burgess Hill West Sussex RH 15 9TL Tel. +44 (0)1444 871313 • Fax +44 (0)1444 871317 • E-Mail: sales@magnetrol.co.uk | o m |

**OUR NEAREST REPRESENTATIVE**